Verätzungen des Auges
Diphtherinhaltige Augenspülung in der Erste-Hilfe-Therapie

Im Rahmen dieser Betrachtungen wurde eine neuere Augenspülung namens Previs® mit den gängigen Spülmöglichkeiten verglichen. Previs® beinhaltet ein wirksames Molekül, das Diphtherin genannt wird. Es ist ein amphoterisches Molekül, sodass es Säuren, Basen aber auch Reduktionsmittel, Oxidationsmittel, Radikale und anderer Bindenspannen abspießt. Die pH-Werte liegen bei 9,25 und 9,3. In Lösungsgehalten wird das Molekül durch Glycerin und Kochsalzlösung. Es handelt sich um eine in Vergleich zur Hornhaut (345 mOsM/kg) gesehene hyperosmolare Lösung mit 880 mOsM/kg. Herkömmliche Augenspülmöglichkeiten sind im Vergleich zur Hornhaut hyperosmolär mit 270 mOsM/kg bei isotoner NaCl-Lösung bzw. 314 mOsM/kg für Phosphatpufferlösungen.

In dieser Studie geht es zum einen um die Testung der Verträglichkeit dieser neuen Augenspülmöglichkeit und um einen Vergleich der Effizienz mit herkömmlichen Augenspülmöglichkeiten. Im Vergleich zu den etablierten Lösungen wurden die Verträglichkeiten von Previs® im Gesunden und die Pufferkapazitäten sowie pH-Entwicklungen in vitro und in vivo getestet.

Die vorliegenden Untersuchungen wurden auf der DAG Tagung 2001 in Berlin vorgestellt.
Material und Methoden

Unschädlichkeitsnachweis Phosphatpuffer versus Previn®

Zehn gesunde Probanden wurden je mit 500 ml Phosphatpuffer oder 500 ml Previn® gespült. Es wurden klinische Daten wie Visus, Spaltlampenmikroskopie, konfokale Mikroskopie vor, direkt nach und 3 Tage nach Spülung erhoben.

Wirkungsnachweis durch pH-Messung

Messung der Pufferkapazität in vitro

Es wurden die Pufferkapazitäten anhand der Titrationssprünge von Phosphatpuffer, Previn®, BSS, Ringer-Laktat und isolierter Kochsalzlösung erstellt. In einem In-vitro-Versuch wurde 5 ml einer 0,1 N NaOH oder 0,1 N HCl-Lösung 5 ml der jeweiligen Augenspülflüssigkeit zugegeben und der pH-Wert gemessen (pH-D 140, Fa. Radiometer, Kopenhagen; Auswertungsprogramm: Uni-Mess Light, AK Computer, Wiesbaden).

NaCl 0,9% versus Phosphatpuffer versus Previn®

In einem Tierexperiment wurden jeweils 8 Kaninchenn (Chinchilla Ablard) in finaler Narkose mit 1 N NaOH für 30 s verspült. Direkt im Anschluss erfolgte eine 500 ml Spülung mit NaCl 0,9% oder Phosphatpuffer oder Previn®. pH-Messungen mit Lackenzapfner (Fa. Merck) wurden direkt nach der Spülung auf der Hornhautoberfläche und nach Vorderkammerabschneidung vom Kammerwasser (0,3 ml) erhoben.

Ergebnisse

Unschädlichkeitsnachweis Phosphatpuffer versus Previn®

Nach der Augenspülung an gesunden Probanden zeigte sich sowohl in der Phosphatpuffer- als auch in der Previn®-Gruppe ein leichter Visusabbau (von 1,57 ± 0,24 auf 1,37 ± 0,2557° kein signifikanter Unterschied ANOVA-Testung), der sich am 3. Tag nach der Spülung komplett erholt hatte. Blindehauthyperämie und Hornhaut-
stumpfung zeigte sich in 7 von 10 Fällen nach Phosphatpuffer-Spülung und in 1 von 10 Fällen nach Previn-Spülung (Fisher’s exact test +). In der konfokalen Mikroskopie
Veränderungen des Auges. Diphotoerhaltige Augenspülung in der Erste-Hilfe-Therapie

Zusammenfassung

Previn in first aid emergency treatment of eye burns

Abstract

Purpose. Previn is a widely accepted therapeutic agent in first aid treatment. The aim of this study was to evaluate the efficacy of Previn in the treatment of eye burns.

Material and Methods. In this study, Previn was compared to a commercial phosphoric acid solution. The results showed that Previn was more effective in removing the debris from the eye.

Results. Previn showed a significant reduction in the number of debris after treatment. The results were consistent with previous studies that showed Previn to be effective in the treatment of eye burns.

Conclusion. Previn is an effective therapeutic agent in the treatment of eye burns. It is recommended for first aid treatment.

Keywords: Previn, eye burns, first aid treatment.
<table>
<thead>
<tr>
<th>Tabelle 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH-Messungen an Hornhautoberfläche und Vorderkammer nach Verätzung mit 18 NaOH und Spüfung mit 0,5 NaCl 0,9%, Phosphatpuffer oder Previn® bzw. ohne Spülung als Referenzwert</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Vorzeit</td>
</tr>
<tr>
<td>Nach 500 ml NaCl 0,9%</td>
</tr>
<tr>
<td>Nach 500 ml Phosphatpuffer</td>
</tr>
<tr>
<td>Nach 500 ml Previn®</td>
</tr>
</tbody>
</table>

* p<0,05 pH-Senkung nach Phosphatpuffer und Previn® zu NaCl 0,9%, n=8 Kaninchens pro Gruppe

In Abb. 4 werden diese Kapazitäten in Moläquivalenten angegeben, wobei der negative Bereich dem sauren Milieu und der positive dem basischen entspricht. Man sieht deutlich, dass im basischen Bereich nur Phosphatpuffer und Previn® den pH senken können. Im sauren Bereich sind beide Pufferkapazitäten besser. Hier zeigt sich auch die geringe Pufferkapazität bei BSS und Ringer-Lactat. NaCl 0,9% hat keinen Pufferwirkung.

NaCl 0,9% versus Phosphatpuffer versus Previn®

> Phosphatpuffer und Previn® sollten nur in der Erste-Hilfe-Therapie und nicht zur prolongierten Augenspülung verwendet werden

Fazit für die Praxis

Korrespondierender Autor
Dr. S. Langerfeld
Aachener Zentrum für Technologietransfer
in der Ophthalmologie (ACTO), Salzburgweg 9,
52070 Aachen
E-Mail: Schrage@acto.de

Danksagung
Diese Arbeiten wurden gefördert von: JFG Prerov
GmbH Ursanmm, Dr. Winzer, Apria. Unser bester
Dank gilt unseren Lehrern und Mentoren Proff. em.
M. Rein und Prof. Paterson für seine argeende
Diskussion.

Literatur
1. Bums FR, Patterson CA (1990) Prompt irrigation of
 chemical eye injuries may prevent severe damage. Ocul
 Surg 1(4): 31–6
 H (2000) Ithrow a delay in killing the external eye in
 the treatment of ammonia eye burns? Comparison of
 two ophthalmic solutions: physiological serum and
 Diphosphate J Fr Ophthalmol 23(3): 468–468
3. Het RL, White CL, Bennet K, Manalis N, Swanson E
 (1991) Clinical comparison of osmotic irrigation fluids
 following chemical injury. Am J Emerg Med
 9(3): 228–31
4. Kumpova C, Enczewski V, Typerovo J, Wurthweyer H,
 Schrage NF (2002) Comparison of emergency eye-wash
 products in humanized simian eyes. Graefes Arch Clin
 Exp Ophthalmol 239(4): 308–11
5. Laux U, Roth HK, Key H, Stohmar D (1975) Die Was
erkonzentration des Kummerners nach Alkalii
 verletzungen der Hornhaut und deren therapeutische
 Beeinflussung. Eine tierexperimentelle Studie.
 185: 35–40
 eye. Emergency intermediate, and long-term care.
 changes after experimental alkali burns. Am J Ophthalmo
 74(3): 314
 thermal injuries of the eye. Surgical and medical treat
 ments based on clinical and pathological pelvic
10. Schrage NF, Schloesser R, Aschenbrenner M, Langeral
 B (2000) Phosphate buffer is alkali eye burns as an
 induced of experimental corneal calcium. Burns
 27: 459–461
 brake C, Reit M (2000) Eye burns: an emergency and