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Abstract

This paper is the 27th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning
over 30 years of research, It summarizes papers published during 2004 that studied the behavioral effects of molecular, pharmacological
and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue
to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors
related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and depen-
dence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and
endocrinology; mental illness and mood; seizures and neurologic disorders; elecirical-related activity and neurophysiology; general activity
and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular respenses; respiration and thermoregulation; and immunelogical
responses.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction of molecular, pharmacological and genetic manipulation of
opioid peptides, opioid receptors, opioid agonists and opi-

This 27th installment of the annual review of research oid antagonists. This review continues the excellent tradi-
concerning the endogenous opioid system summarizes pub- tion initiated by Drs. Abba Kastin, Gayle Olson, Richard

lished papers during 2004 that studied the behavioral effects Olson, David Coy and Anthony Vaccarino in the reviews
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spanning from 1978 through 2000. As begun in the sum-
martes of papers published over the past three years (2001,
2002 and 2003 papers), two major sections of the review
have been added because of the rapid and large expansion
of the field. The first is the molecular-biochemical effects
and neurachemical localization studies of endogenous opi-
oids and their receptors especially as they may eventually
relate to behavior (Section 2). The second is the examina-
tion of the roles of these opioid peptides and receptors in
their most studied aspect, pain and analgesia (Section 3). As
with the previous reviews, subsequent sections will cover
the roles of opioid peptides and receptors in the areas of
stress and social status (Section 4); tolerance and dependence
(Section 5); learning and memory (Section 6); eating and
drinking (Section 7); alcohol and drugs of abuse (Section 8);
sexual activity and hormones, pregnancy, development and
endocrinology (Section 9); mental illness and mood (Sec-
tion 10); seizures and neurologic disorders (Section 11);
electrical-related activity and neurophysiology (Section 12);
general activity and locomotion (Section 13); gastrointesti-
nal, renal and hepatic functions (Section 14); cardiovascu-
lar responses (Section 15); respiration and thermoregulation
(Section 16); and immunclogical responses (Section 17). To
accommodate these additional large sections, only published
articles are covered in this review; published abstracts from
scientific meetings are not covered, but will be added as they
are published in the scientific literature. Given the scope of
this review, a paper may be inadvertently overlooked. If this
is the case, please accept my apologies, and send the citation
and abstract to richard_bodnar@qc.edu, and I will include it
in the next yearly review.

2. Endogenous opioids and receptors

This section examines the molecular-biochemical effects
(Section 2.1) and neuroanatomical localization (Section 2.2)
of opioid peptides and receptors.

2.1. Molecular-biochemical effects

This sub-section will review current developments in the
molecular and biechemical characteristics of opioid peptides
and receptors by subtypes: mu agonists and receptors (Sec-
tion 2.1.1), deltz agonists and receptors (Section 2.1.2), kappa
agonists and receptors (Section 2.1.3), and OFQ/N and the
ORL-1 receptor {Section 2.1.4).

2.1.1. Mu agonists and receptors

A review [869] summarizes recent studies identifying
splice variants of the MOR-! clone in explaining the phar-
macology of opioids. Another review [1081] indicates that
the order of opioid receptor type evolution is kappa, delta
and most recently, mu receptors. There are high correlations
in the binding and analgesic effects of mu, delta and kappa
opioids in mammals and amphibians [1081]. Endogenous

morphine can be formed in human cells [900]. Splice variants
of MOR-1produced differential [355]gamma$S binding with
the MOR-1E variant binding BEND to a greater degree
than DAMGO, and the MOR-1C variant binding BEND to
a lesser degree than DAMGO. Whereas DYN, BEND and
morphine were most effective in stimulating this binding in
the MOR-1E variant, M6G and fentanyl were most effective
in stimulating this binding in MOR-1 [125]. Three new
alternatively spliced varaints of MOR- 1C (MOR-1C1, MOR-
1C2, MOR-1C3) were obtained using RT-PCR with these
variants differing in their responses to agonist-stimulated
[(35)8]GTPgamma$ binding assays [868]. Identification
of 11 of the 17 proposed exons as well as the majority of
exon combinations used to make 21 differentially spliced
mu opioid receptor genes was accomplished using specific
polymerase chain reaction conditions [637]. Morphine, but
not fentanyl or methadone produces impairments in the
mitochondrial membrane potential in desimipramine-treated
human glioma cells, an effect prevented by naloxone and
L-NAME [737]. Morphine induces terminal MOR desensiti-
zation by sustained phosphorylation of the carboxy-terminal
residue, serine-375 [L003]. Opioids block the ability of

- epidermal growth factor to rapidly internalize its receptor,

and thereby alter its ability to phosphorylate ERK [1002].
Both the human MOR gene and the N4OD mutation showed
similar binding affinities to morphine, M6G and BEND, sim-
ilar robust receptor internalization following DAMGO and
BEND, but not morphine and M6G, and similar desensitiza-
tion to prolonged morphine, M6G and BEND [98]. CXBK
mice display less morphine expression because of an A-to-C
change at the MOR 5'-untranslated region that decreases Spi
binding and MOR gene transcription {654]. MOR, but not
DOR mRNA in the DRG was ipsilaterally up-regutated 1-2 h
and at 96h after ipsilateral paw inflammation that corre-
sponded with increased DAMGO binding in the DRG [907].
Activation of MOR by saturating concentrations of DAMGO,
methdone or fentanyl, but not morphine reduced robust inter-
nalization of a tagged MOR [186]. Heterodimerization and
cross-sensitization occur between the MOR and chemokine
CCR-5 receptor such that DAMGO enhances phosphory-
lation of the chemokine receptor and reduces chemokine
CCR-5 agonist-induced [35S]GTPgammaS. binding [198].
Phospholipase D2 is a modulator of mu agonist-induced
endocytosis as well as desensitization and resensitization
of MOR [611]. MOR activation increased transcription of
STAT-3 through an ERK-dependent and Raf-1-independent
mechanism [1255]. DAMGO-induced super-sensitization of
adenylate cyclase acts through G-alpha-o that is modulated
by regulator of G protein signaling proteins [226]. Mu
opioid-induced stimulation of c-jun N-terminal kinase was
dependent upon phosphatidylinositol-3-kinase given effec-
tive inhibition by wotmannin or coexpression of a dominant
negative mutant [557]. Morphine and fentanyl decrease and
increase local blood flow and partial pressure of oxygen
in the fronto-parietal cortex and NAC respectively [330].
The 7,8-saturated codeine congeners were more efficacious
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' in activating MOR, but only dibydrocodeine was more
effective than codeine in activating DOR. Hydrocodone
and oxycodone in turn were more effective than either
agonist in activating MOR and DOR. The 3-hydroxy
related componnds were more effective than the 3-methoxy
related compounds of morphine in activating MOR [1120].
Neuron-restrictive silencer factor can repress MOR tran-
scription in NS20Y and HeLa cells through a mechanism
dependent on the MOR. neuron-restrictive silencer element
[589]. A new series of fentanyl derivatives were found to
have very high affinity for both MOR and I(2) imidazoline
binding sites [267]. Mu receptor antagonists developed from
3,4-dimethyl-4-(3-hydroxyphenyl)piperidine appear to act
biochemically as inverse agonists [315]. N-demethylation
of 3-deoxymorphine(1) alters mu, delta and kappa opioid
binding affinity [254). Compound 2 of an N-alkyl-4-[(8-
azabicyclo{3.2.11-oct-3-ylidene)-phenylmethyl}-benzamide
acted as a selective mu receptor agonist [179]. The thiosac-
charide compounds in the morphine series 5b, e, 6a and 6a
had higher affinity, but less selectivity for MOR than M6G
[709]. The transport inhibitor, probenecid decreased the
clearance of plasma M6G, and increased the area under the
miotic effect versus time curve [1033]. Meningitis increased
the passive diffusion of morphine over the blood-brain
barrier [1138]. Morphine pharmacokinetics were found to be
worse in brain tissue damaged by trauma with shorter T{max)
and relative recovery measures [309]. Endogenous morphine
was found in the amygdala and could stimulate hippocampal
and amygdala NO release in a naloxone- and L-NAME-
sensitive manner [12953. Reticuline, a morphine precursor
in plants increased endogenous morphine levels in the pedal
ganglion of Mytilus edulis [1296]. Morphine stimulated
NO release from muscles of Ascaris suum in a naloxone-
and L-NAME-sensitive and CTOP-insensitive manner, In
contrast, CTOP, but not naloxone blocked M6G-induced
NO muscle release {1298]. Sublingual buprenorphine
administered alone or in combination with naloxone fails
to display dose proportionality in pharmacokinetic analyses
{448]. Intravenous morphine and codeine decreased pupil
diameter by 26% in volunteers; whereas tramadol had
slower-acting effects [608). An admixture of morphine,
bupivacaine and clonidine in implantable pumps retained
their stability at room and refrigerator temperatures over
90 days [227]. Drug incorporation, during rather than after,
synthesis was more effective in controlling release rate of
morphine in an ethylcellulose polymeric suspension [785].

BEND-induced [(35)S]-GTPgamma8 binding was
observed in wild type mice, but not in mice with triple KO of
MOR, DOR and KOR [236]. Whereas PC2 and 7B2 null mice
lack pituitary AMSH, the latter, but not the former group
is still capable of producing BEND from beta-lipotropin
[644). Acrylamide-induced neuropathy increases BEND and
AMSH immunoreactivity in spinal motorneurones [503].
Nonopioid BEND receptors insensitive to naloxone and
Menk were characterized on mouse macrophages and rat
myocardium, spleen, adrenal and brain membranes [819].

HEK293 cells joining human BEND to part of the NLI
gene secreted BEND in a dose-dependent manner following
doxycycline administration [974]. Endomorphin-2 was more
effective than endomorphin-1 in dose-dependently increas-
ing DYN(1-17) in spinal perfusates of rats, an effect blocked
by naloxone or 3-methoxynaltrexone [659]. Mice with triple
KO of MOR, DOR and KOR displayed increases in NPFF(2)
receptor binding in the amygdala, nucleus of the vertical limb
of the diagonal band, SN, vestibular nucleus and spinal cord,
and decreases in NPFF(1) receptor binding in the nucleus
of the vertical limb of the diagonal band, SN and spinal
cord [404]. Methadone was more effective than morphine in
inhibiting NMDA, receptors expressed in Xenopus oocytes,
particularly the NR1/2A and NR1/2B subtypes relative
to the NR1/2C and NR1/2D subtypes [168]. Intrathecal
morphine and fentanyl increased spinal adenosine in healthy
human volunteers [311]. Loperamide-stimulated uptake of
radiolabeled glucose into C2C12 cells was decreased by
concentrations of 173122 which inhibits both phospholipase
C and PKC [684]. Endomorphin-1 and -2 display flux in
cerebral endothelial cells from the basolateral to apical
direction with self-inhibition induced by excess treatment.
Transport was unaffected by P-glycoprotein inhibition,
DAMGO or DPDPE treatment [1059]. An opioid agonist,
DIiPQOA. potently inhibited diprenorphine binding and had
mu >Kkappa ~ ORL-1>delta activity in human MOR and
human guanosine 5'-0-(3-[35)S}thio)triphosphate assays
[1150]. A chimeric peptide, H-Dmt — p-Arg — Phe — Lys-
NH-CH2-CH2-NH-Phe « Cha[NH-CH2]PsiTic < Tyr-H
displayed a mu agonist-delta antagonist action on the
guinea-pig ileum and mouse vas deferens assays [1202].
Endomorphin-1 and morphine exposure to SH-SYSY cells
down-regulated mu receptors and produced rapid inter-
nalization, effects blocked by hypertonic sucrose [492]. A
peptide, c-[Tyr-d-Pro-d-Trp-Phe-Gly-1, structurally related
to endomorphin-1, displayed affintity towards MOR [172].
Every oxygenated functional group of naltrexone (1) is nec-
essary for binding to MOR [1148]. The pharmacokinetics of
intravenous, buccal, intramuscular and gastric administration
of oxycodone in children aged 6-93 months were similar to
that of adults [617]. A series of 6-amino acid conjugates of
14-0O-methyloxymorphone were agonists in the mouse vas
deferens assay with the alpha-amino acid epimers favored
by MOR and the beta-epimers showing increased interaction
with DOR [1067). Whereas the N-2-phenylethyl analogue
18 of the 10-ketomorphinans exhibited good affinity and
selectivity at MOR, the N-cyclobutylmethyl analogue 13
gave high affinity and selectivity at KOR [1269]. The
mu binding affinity of cyprodime was reduced following
prolongation of the 4-alkoxy group of cyprodime and its
4-butoxy analogue [1068]. Mutant H297Q MOR Chinese
hamster ovary cells show diminished (50%) kinetic rate
constants for [3H]-BENA and associated rate constants for
[3H]-naloxone [1070]. Naloxone-induced cAMP overshoot
in insect Sf9-mu cells was differentially induced by different
ohmefentany! stereotisomers [691].
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2.1.2. Delta agonists and receptors

A review [1159] indicates that since chemically-different
agonists differ in their ability to phosphorylate, internalize
and/or down-regulate DOR, and because homologous regu-
lation of opioid receptor signaling is thought to play an impor-
tant role in opioid tolerance, potential DOR-selective opioid
analgesics should be developed with a reduced propensity for
analgesic tolerance [1159]. Another review [1049] examines
the development of understanding intracellular signaling sys-
tems of Enk including the IP3 receptor, immunophilins, NO
and p-serine [1049]. Whereas Enk expression is increased
during the day in the frontal cortex, DYN expression is
lower in the SN during the day relative to the night [1197].
Intrathecal injection of Fluo-Delt labels DOR-internalizing
neurons in the dorsal and ventral horn that are increased
by either morphine exposure for 48h or dorsal rhizotomy.
However, rhizotomy blocked the ability of morphine to
increase Fluo-Delt DOR internalization [791]. Binding of
Delt IT to the human DOR was interrupted by systematic
alterations and deletions in the third extracellular loop, par-
ticutarly in positions 279-299. Alterations in Trp{(284) and
Len(286) produced the largest effects [327]. A mutation
in position S363A of the human DOR attenuates DPDPE-
induced, but not SNC80-induced down-regulation of DOR
[820]. ERK/mitogen-activated protein kinase activity pre-
vents DOR internalization, desensitization and sequestration
by blocking arrestin 2 and DOR interactions [313]. SNC-
80 was more effective than Enk in producing stronger and
faster desensitization, loss of opioid DOR binding sites and
downrepulation and redistribution of the receptors from the
cell surface to intracellular compartments [649]. DOR, but
not MOR opioid-stimulated [358]GTPgammasS binding was
decreased in the spinal cord of polyarthritic rats treated with
CFA. [223]. Substitution of 2’ 6'-dimethylphenylalanine for
the N-terminus, tyrosine, retains DOR binding activity for
Delt and Enk [987]. A Cys2-containing Enk analogue was
seven times more selective for DOR than DPDPE because it
increases the efficacy, but not the affinity of the analogues
to DOR, increases their peptidase resistance and thereby
attaches resistance to enzyme degradation [882]. A methy-
lated cyclic analogue of Enk showed higher mu, delta and
kappa antagonist potencies and greater affinity for MOR,
DOR and KOR [1203]. P-glycoprotein KO mice displayed
an eight-fold increase in uptake of the delta agonists, DPDPE
and SNC121 and the mu agonist, loperamide relative to
wild type P-glycoprotein-competent mice [259]. Interactions
between the different agonist-bound states of the DOR with
different G-protein subtypes indicated cooperativity between
separated alpha and beta-gamma subunits, and pointed to the
independent promotion of specific signaling events [24]. A
rank-order of delta agonist analogues of SNC86, SNC80 and
SNC162 was demonstrated in their ability to elicit convul-
sions, produce anti-depressant effects and induce locomotor
activity {552]. The ability of Delt to increase extracellu-
lar DA in the NAC was unaffected by pretreatment with
general, delta-1, delta-2 or mu opioid antagonists [799].

DOR and alpha2A-adrenoceptors are in close proximity and
form interacting complexes in heterologous cells. Alpha2A-
adrenoceptor expression promotes DOR-mediated neurite
outgrowth [942]. The circuiating short-chain fatty acids, pro-
prionate and butyrate increased Enk and tyrosine hydrox-
ylase mRNA levels in PC12 rat pheochromocytoma cells
[716]. Affinity labels for [p-Ala(2)}-Delt 1 were identified
by incorporation at the para position of Phe(3) (‘message’
sequence) or Phe(5) {“address’ sequence) of an electrophilic
group [15]. A fluorescent analogue of the delta opioid agonist,
Dmt-Tic was identified [65]. A delta receptor antagonist and
delta receptor inverse agonist [+]-KF4.{+}-4, was created
from the 5-phenylmorphan class of opioids [176]. Compound
15a and 15¢ of an N-alkyl-4-[(8-azabicyclo[3.2.1]-0ct-3-
ylidene)-phenylmethyl]-benzamide acted as a selective delta
receptor agonist [178]. Menk absorption into the human nasal
epithelilm was markedly increased by protease inhibitors
and absorption enhancers [7]. A bivalent ligand, KDN-21,
tevealed that spinal delta and kappa opioid receptors are orga-
nized as heterodimers that in turn give rise to delta(l) and
kappa(2) phenotypes [102].

- 2.1.3. Kappa agonists and receptors

A review [692] of regulation and trafficking of KOR
include biochemical mechanisms of desensitization, internal-
ization and down-regulation, species differences and struc-
tural basis for species variations. The number of haplotypes
of the KOR gene varied across racial categories including
African-Americans (9), Caucasians (6} and Hispanics (5)
[1256]. The kappa agonists, U50488H, U69593 and TRK-
820 increased [35$]GTPgammaS binding in lower midbrain,
straiturm and limbic forebrain in a NBNI-sensitive manner
[777]. The kappa agonist, U69593 administered over 5 days
increased kappareceptor density in the hypothalamus, but not
in frontal cortex or C/P 3 days later, whereas kappa receptor
density was decreased in the frontal cortex and C/P, but not
hypothalamus two weeks later. DYN levels were increased in
the frontal cortex at 3 and 14 days and in the C/P at 14 days
after U69593 treatment [258]. An anti-endothelin antjserum
increased kappa, but not mu or delta receptors in the C/P,
and decreased C/P DAMGO efficacy, but not potency [1194],
GTPgamma$ potently inhibited U69593 binding and affin-
ity, but not bremazocine binding and affinity. NBNI had a
four-fold higher affinity for U69593-labeled receptors rel-
ative to bremazocine-labeled receptors. U69593 activated
more G-protein receptors than bremazocine [966]. Salvinorin
A, a non-nitrogenous naturally-occurring compound acts as
a full agonist at kappa receptors with similar efficacy to DYN
and greater efficacy than U50488H or U69593 [196], and is
reviewed in terms of its chemistry, pharmacology and biology
relevant to KOR [1235]. The ability of kappa opioid recep-
tors to activate c-Jun N-terminal kinase is dependent upon
Gbetagamma, Src, FAK, Sos, Rac and Cdc42 signals [558].
DYN A(1-17yand DYN A(2-17) evoked spinal prostaglandin
release that was blocked by the NMDA antagonist, AP-V, the
COX inhibitor, ibuprofen and the COX-2 inhibitor, SC58560,
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suggiesting that the nonopioid actions of spinat DYN in pro-
ducing hyperalgesia acts through a combined NMDA and
COX cascade [613]. Multiple transcription initiation sites
for pro-DYN were identified with one possessing an addi-
tional 19 nt at the 5" end [638]. The SSRI, fluoxetine deliv-
ered over 1 week increased pro-DYN gene expression in the
hypothalamus, and decreased this expression in the C/P and
NAC {287]. Cloning of pro-DYN cDNA revealed the encod-
ing of alpha-neoendorphin, DYN-A, DYN-B and two Lenk
sequences in the lungfish brain [300]. The selective nore-
pinephrine reuptake inhibitor, nisoxetine, increased pro-DYN
gene expression in the hypothalamus, NAC and hippocam-
pus, and decreased pro-DYN gene expression in the C/P
[288]. The putative kappa-3 agonist and ORL-1 antagonist,
NalBzOH stimulated [35S]GTPgamma$ binding and basal
adenylyl cyclase activity in the olfactory bulb that was unaf-
fected by ORL-1 or kappa antagonists, but reduced by delta
and mu antagonists [850]. Piperidine-derived kappa antago-
nists (e.g., JDTic) rely more on their phenol address groups in
producing kappa activity than naltrexone-derived antagonists
(e.g., NBNI) [1118). Potent 10-oxo, 10-alpha-hydroxy and
10-beta-hydroxy derivatives of the kappa agonist, TRK-820
were synthesized [490] as well as metabolites of TRK-820
[573].

2.1.4. OFQ/N and ORL-I receptor

Pairing the C-terminus of ORL-1 with green fluorescent
protein revealed that 80% of the protein was internalized
in periplasmic membrane in the presence of OFQ/N [241].
OFQ/N and other ORL-1 receptor ligands inhibited K(+)-
induced serotonin overflow in mouse neocortex, an effect
blocked by peptide and non-peptide ORL-1 receptor antag-
onists, and absent in ORL-1 KO mice {756]. OFQ/N antag-
onists that also act at the mu receptor were designed using
octahydrobenzimidazol-2-ones 14 and 23 {208]. The OFQ/N-
ORL-1 receptor system functionally coupled with G-protein
regulated inwardly rectifying K(+) channels is antagonized
by NQX2149, a Spiegelmer L-enantiomeric oligonucleotide
ligand [331]. An ORL-1 peptide antagonist, Ac-Arg-Tyr-
Tyr-Arg-lle-lysinol, displayed inhibition using the mouse vas
deferns assay, and competed at the ORL-1, but not delta opi-
oid receptor [612). Substitution of the 3-quinoline ring was
very critical for affinity of the ORIL-1 antagonist, JTC-801
[10101. OFQ/N suppresses basal DA release from midbrain
primary cultures that is blocked by an ORL-1 antagonist, but
fails to alter DA release evoked by direct depolarization of
terminals with elevated extracellular K+ [801]. Functional
coupling characteristics of the ORL-1 receptor are simi-
lar in dog brain membranes as they are in other species
[541]. A selective ORL-1 petide analogue antagonist, Ac-Cit-
p-Cha-Qaa-D-Arg-D-p-CIPhe-NH2 displayed highly potent
and selective effects [1156]. A series of N-(4-piperidinyl)-2-
indolinones have been identified as ORL-1 ligands [1266]. A
chimeric OFQ/N ligand, NNC 63-053 showed lower potency
than QFQ/N in inhibiting electrically-induced twitches of the
guinea pig ileumn, and moreover was blocked by naloxone

but not an ORL-1 antagonist [419]. Novel quinolizidine tem-
plates have facilitated the design and synthesis of ORL-1
receptor and OFQ/N ligands [545].

2.2. Neuwroanatomical localization

This sub-section will review current neuroanatomical
studies indicating localization of opioid peptides and recep-
tors by subtypes: mu agonists and receptors (Section 2.2.1),
delta agonists and receptors (Section 2.2.2), kappa agonists
and receptors (Section 2.2.3) and OFQ/N and the ORL-1
receptor (Section 2.2.4).

2.2.1. Mu agonists and receptors

MOR-labeled somatodendritic processes were co-
localized with D2 dopamine receptors half of the time in the
dorsolateral striatom [27]. MOR mRNA was co-contained
with GAD mRNA in almost all neurons of the hippocampus,
whereas GAD-DOR mRNA co-localization was restricted
to the hippocampal principal layers, oriens layer and hilus.
Finally, somatostatinergic oriens layer, but riot hilar neurons
expressed DOR and MOR in the hippocampus [1089].

MOR and CB-1 receptors were co-localized approxi-

mately 20% of the time in dendrites in the NAC shell,
and to a lesser extent in the NAC core [§93]. MOR-1
immunoreactivity had axonal appositions with vesicular
Ach transporter immunoreactivity in the hippocampal
dentate gyrus [566]. MOR immunoreactivity is co-localized
with activity-regnlated cytoskeleton-associated protein in
dendritic shafts and also spines of the C/P with increased
co-localization occurring during post-natal development
[1186]. Antisera directed against exon 11 of the MOR-1
splice variant indicated immunoreactivity in the olfactory
tubercule, GP, SN and C/P with the latter site demonstrating
co-expression of exon 4- and exon 11-LI in cells apposed
to dopaminergic terminals [1]. Using a RNA probe directed
against the MOR(1C) splice variant, autoradiographic
labeling was detected over much of the telencephalon,
diencephalon, mesencephalon, cerebellum, spinal cord and
DRG [997]. The PKC antagonist, NPC 15437 blocked
motphine-induced increases in c-fos expression in the
striatum, cortex, but not in the thalamus. Morphine increased
{14C])-2-deoxy-D-glucose-measured cerebral glucose uti-
lization in the C/P, primary somatosesnory cortex, thalamus,
superior colliculus, pontine reticular formation and spinal
cord, and when paired with neuropeptide FF, morphine
also increased glucose utilization in the auditory cortex,
inferior colliculus and dorsomedial PAG- [911]. Morphine
translocates PKC beta-1[, but not beta-I from perinuclear
areas to the plasma membrane in cortical and striatal neurons
[445]. MOR KO mice displayed increases in D1 and D2 DA
receptor autoradiography across all cerebral brain regions,
but no one particular brain region displayed significance
[660]. Endomorphin-1 and endomorphin-2 immunoreactive
neurons originating in the PBN innervate predominantly
the dorsomedial, centromedial and arcuate hypothalamic
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areas [205]. Endomorphin-2 immunoreactivity co-localized
with SP in lumbar DRG, and persisted in mice lacking the
preprotachykinin A gene that codes SP [982]. Ultra-low
(10(-14)M), but not low (10(-6)M) doses of morphine
increased neurite growth in cultured spinal cord and cortical
neurons [ {40]. Beta-galactosidase, a gene reporter molecule
for NPY Y2R and Y3R receptors, was found in arcuate
neurons that co-expressed NPY and BEND in Y2R-KO
and Y-5R KO mice [342]. MOR are detected in vestibular
afferents in the Scarpa’s ganglion and cristae ampullare
epithelia in the inner ear, particularly in calyx, dimorphic
and bouton vestibular afferents [902]. Mu opiate receptors
are expressed in keratinocytes and unmyelinated nerve fibers
in the dermis and epidermis that co-express BEND [107].

2.2.2. Delta agonists and receptors

Decreased DOR expression is observed ipsilaterally in
the spinal cord of rats undergoing sciatic nerve fransaction,
chronic constriction injury of the sciatic nerve and L5/L6
spinal nerve ligation [1084]. Enk and SP are co-localized
in boutons in the pre-Botzinger complex that is related to
respiratory rhythmogenesis; this colocalization is accompa-
nied by glutamate, but not GABA or glycine [689]. Menk
and DYN have somatodendritic profiles in cells projecting
from the VTA to the medial prefronrtal cortex [377], Enk
KO mice display increases in adenosine Al receptor autora-
diographic binding, but not in adenosine A2 receptors or
transporters [61]. Enk is found in small neurons in Area X,
and is co-localized with GABA in large cells projecting from
Area X to the thalamus in songbirds [175]). Whereas Enk
immunoreactivity was almost absent in Area X of the male
zebra finch, SP fibers, but not perikarya were present [931].
Menk distributions in the lateral septum, the septohippocam-
pal and septofimbrial pathways are highly homologous in
songbirds and mammals [402]. Grafts of immortalized rat
chromaffin cells over-expressing Menk significantly reduced
the number of formalin-evoked c-fos immunoreactive spinal
neurons [305). In the hamster brain, Menk and Lenk are
consistent with that of the rat with notable exceptions in
the lateral septum, ventromedizl hypothalamus and cingu-
late. Menk is more abundant than Lenk in most nuclei except
for the postero-intermediate BNST {479). Enk and SP fibers,
but not stained cells are found in the human paraventricular
thalamus [1146]. The reciprocal commissural fibers in the
lateral aspect of lamina III-IV of the dorsal horn projecting
to the contraletal gray matter immunostained for glutamic
acid decarboxylase andfor the glycine transporter, but not
for Menk [888]. Menk-Arg(6)-Gly(7)-Leu(8)-L1 is found in
both cells and fibers of the entire rat auditory system with
the exception of the medial superior olive and ventral divi-
sion of the medial geniculate body [8]. It is also found in
widespread fashion in the human medullary reticular for-
mation, NTS, hypoglossal nucleus, spinal vestibular nuclei,
lateral cuneate nucleus, nucleus prepositus, inferior and supe-
rior colticuli, SN and pontine and midbrain central gray [247].
Methylphenidate administration fails to affect striatal Menk

and DYN while robustly increasing SP levels [1241]. Both
Enk and ACTH immunoreactivity are detected in the sea bass
gut at an early larval stage four days after hatching [780].

2.2.3. Kappa agonists and receplors

Pro-DYN mRNA decreased significantly with age in the
arcuate nucleus and amygdala, increased significantly with
age in the hippocampus, and failed to produce age-related
changesin the NTS, cortex, C/P or PVN [625].

2.2.4. OFQ/N and the ORL-1 recepior

OFQ/MN was found in its highest concentrations in the
dorsal PAG, LC, ventromedial hypothalamus and spinal dor-
sal horn, and in high concentrations in other hypothalamic
nuclei, the ventral PAG, pontine tegmentum, amygdala, retic-
ular formation and spinal trigeminal nucleus of adult human
brains [1216].

3. Pain and analgesia

This section has four major parts examining recent
advances in: (a) pain responses especially as they may relate
to opioid function, (b) opioid analgesia organized as a func-
tion of receptor subtypes, (c) sex, age and genetic differences
in opioid analgesic responses, and (d) opioid mediation of
other analgesic responses.

3.1. Pain responses

The following sub-sections examine work done on spinal
(Section 3.1.1) and supraspinal (Section 3.1.2) circuits,
respectively. '

3.1.1. Spinal circuits

Intrathecal administration of nuclear factor B inhibitors
significantly reduced mechanical allodynia and thermal
hyperalgesia following unilateral hindpaw inflammation
evoked by CFA that was accompanied by increases in spinal
COX-2 mRNA [653]. Like spermine and DYN, intrathe-
cal poly-L-lysine induces biting, licking and scratching of
the hindpaw, tail and flank, effects blocked by morphine
and competitive NMDA antagonists [1113]. Whereas, neu-
rokinin or NMDA receptor antagonists attenuated the inhi-
bition of bradykinin-induced plasma extravasation induced
by intrathecal nicotine or intraplantar capsaicin, intrathe-
cal naloxone or phentolamine enhanced nicotine’s and cap-
satcin’s effects [762].

3.1.2. Supraspinal circuits

Anesthetized rats with a retractor placed between the right
fourth and fifth ribs for 1h displayed mechanical and cold
allodynia within 14 days after surgery with axon loss noted
in the intercostals nerves of the retracted ribs; this effect was
blocked by systemic and intrathecal morphine and cloni-
dine [164]. Avulsion of the rat brachial plexus produces a
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neurdpathy at distant sites of the injury including the ipsi-
lateral and contralateral hindpaws. The resultant mechani-
cal and cold allodynia are reversed by morphine, clonidine,
ketamine and gabapentin {946]. Acidic saline administered
into the lateral gastrocnemius muscle bilaterally reduces
withdrawal thresholds to tactile stimulation of the hindpaws;
this allodynia is reduced by morphine, NMDA antagonists
(NS1209, ketamine), KCNQ K(+) channel openers (retiga-
bine, flupirting) and Na(+)-channel blockade (mexiletine)
[829). Post-incisional surgery of the plantar surface of the rat
hindpaw produced mechanical hyperalgesia, tactile allodynia
and decreases in weight bearing with systermic morphine and
gabapentin more effective in blocking mechanical hyperalge-
sia than tactile allodynia [1206]. Intraplantar interleukin-18
produced mechanical hyper-nocicption that was inhibited by
dexamethasone, morphine and an endothelin-1 inhibitor, but
not by indomethacin or a lipoxygenase inhibitor [1169]. Two
models of osteoarthritis, using partial medial meniscectonry
and iodoacetate, produced minor changes in the amount of
weight borne by the limb, but produced marked mechani-
cal hyperalgesia and tactile allodynia that were sensitive to
opiate treatment {339]. Rats treated with an intra-articular
injection of monosodium iodoacetate to induce osteoarthritis
developed mechanical allodynia and a weight-bearing deficit
on that foot for up to 10 weeks; these effects were blocked by
morphine and tramadol [231]. Adrenalectomy decreased pain
behaviors in both phases of the formalin test, and increased
plasma BEND above the detection limit {1174]. Physiologi-
cal manipulations that block analgesia eliminate inhibition
of the tail-flick reflex and restore vocalization to thermal
stimulation, but also produce concurrent sensitization that
generally heightens behavioral reactivity [252]. Formalin
administered in the tail produce licking responses similar to
that of the hindpaw. Systemic morphine, MK-801 and aspirin
produce analgesia on this measure similar to that of the sec-
ond phase of the formalin hindpaw response, whereas topical
morphine exerts a shorter time course of action [618]. An ani-
mal model of bone cancer pain consisting of injections of the
mouse femur with NCTC2472 cells produced tumor growth,
Spontaneous lifting and movement-evoked lifting were sensi-
tive to morphine treatment, although stress-induced analgesia
cannot be ruled out [1168].

3.2. Opioid analgesia

The following sub-sections examine advances in our
understanding of opioid-mediated analgesia in the past year
especially as they pertain to the opioid receptor subtypes and
their genes: (i) mu agonists and receptors, (ii) delta agonists
and receptors, (iii) kappa agonists and receptors, and (iv)
OFQ/N and the ORL-1 receptor. A large number of studies
examine either knockout or knockdown techniques to indi-
cate roles of the receptors, and potential splice variants in
opioid analgesic function. Separate paragraphs are devoted
to studies in which other transmitter and peptide systems
affect apioid analgesia; the effects of opioid manipulations

upon analgesia induced by other peptides and transmilters
are covered in Section 3.4. Finally, human studies related to
opioid and particularly mu receptor-mediated analgesia are
covered in Section 3.2.5.

3.2.1. Mu agonists and receptors

3.2.1.1. Morphine. Chronic perfusion of morphine into the
OFC depressed tactile and cold allodynias and thermal hyper-
algesia in mononeuropathic rats in 2 naloxone-reversible
manner. In contrast, it increased acute nociceptive thresholds
in control rats in a naloxone-insensitive manner [14].
Administration of morphine, endomorphin-1 or DADL, but
not U50488H into the ventrolateral orbital cortex decreased
nociceptive behaviors on the formalin test, effects biocked by
naloxone and BFNA, but not N'TI [1226]. Morphine admin-
istered into the basolateral amygdala produces analgesia and
altered RVM cell activity, effects interrupted by PAG lesions
[746). Intrathecal morphine decreased mechanical hyperal-
gesia caused by both spared nerve injury and spinal nerve
ligation models in a naloxone-reversible manner [1283].
The mechanical allodynia induced by unilateral spinal
nerve injury was more pronounced ipsilaterally and present
contralterally in MOR KO mice; 1J50488H, but not morphine
inhibited these allodynic effects in the KO animals [721].
Morphine reversed and prevented stimulus-induced progres-
sive tactile hypersensitivity following sciatic nerve crush
in rats, but not stimulus-induced hypersensitivity in spared
nerve injury [280]. Morphine produced more potent anal-
gesia in neurpathic mouse models involving STZ-induced
diabetes than with sciatic nerve ligation, Morphine failed to
affect NRM 5HT reductions induced by both models [1062].
Using the Hargreaves thermal test and bradykinin-induced
nociception, the reduction in morphine analgesia in a neu-
ropathic pain models was most pronounced for intraplantar
morphine, was shifted rightward for systemic morphine, and
was unaffected for supraspinal morphine. This corresponded
with a drastic decrease in MOR expression in DRG neurons of
nerve-injured mice [919). Unilateral hindpaw CFA produced
up-regulation of MOR and DAMGO-induced G protein cou-
pling in the ipsilateral, but not contralateral DRG, and failed
to affect spinal cord and hypothalamic MOR levels [1013].
The suppression of morphine analgesia in mice with sciatic
nerve ligation was accompanied by an up-regulation of MOR
on the ipsilateral side of the superficial lumbar dorsal homn
laminae [812]. The Bennett’s model of neuropathic pain was
significantly reduced by intraplantar, but not subcutaneous
administration of morphine, DAMGQ, endomorphin-1 and
endomorphin-2, and reversed by the peripheral antagonist,
naloxone methiodide and the mu antagonist, cyprodime
administered into the site of injury [836]. Writhing responses
induced by acetic acid administration in gerbils were reduced
by mu (morphine, fentanyl) and kappa (U50488H), and
to a lesser degree by delta (SNC80) agonists [368]. The
dose-dependent pattern of morphine analgesia was shifted
to the right in NMRInwnu mice relative to NMRI mice,
presumably because of lower baseline thermal latencies



2018

Reproduction, representalion et diffusion interdites. Loi du 01/07/92.

2638 R.J. Bodnar, G.E. Klein / Peptides 26 (2005) 2629-271]

[1167]. Morphine analgesia and morphine tolerance were
enhanced in mice lacking expression of the PKC-interacting
protein gene, and this interactive protein reduced agonist-
induced inhibition of adenylyl cyclase and suppressed
human MOR at the G-protein level [417]. AS probes
directed against G-protein signaling proteins belonging to
the Rz subfamily significantly increased the antinociceptive
potency of morphine, heroin, BAMGO and endomorphin-1
without altering analgesia elicited by endomorphin-2,
DPDPE or Delt II [376]. Intrathecal morphine analgesia
was blocked by intrathecal naloxone, but not BENA or NTI.
Intrathecal NBNI blocked intrathecal morphine analgesia
on a shock, but not tail-flick measure [400]. Intraplantar
administration of XC Rous sarcoma-virus transformed rat
fibroblasts produces both short-term and long-term thermal
hyperalgesia. Whereas both phases are blocked by morphine
and the endothelin type A antagonist, BQ-123, only the
short-term phase is blocked by the endothelin type B
antagonist, BQ-788 [54]. Lipopolysaccharide administration
decreases forelimb grip force in mice that displays tolerance
with repeated treatment and is reversed by either systemic
or intrathecal morphine [577]. The flexor paw response
induced by intra-arterial capsaicin or pinch was inhibited by
morphine and reinstated by naloxone [35]. Higher doses of
morphine were needed to induce analgesia on the hot-plate
and tail withdrawal tests in rats with partial tail amputations
[594]. Morphine decreased the rabbit jaw depressor reflex in
spinalized and non-spinalized rabbits in a naloxene-sensitive
manner, and decreased the ankle flexor tibialis anterior reflex
induced by toe stimulation more in intact than spinalized
animals [528]. Mechanical and cold allodynia induced by
the vinca alkaloid, vincristine, was blocked by morphine and
clonidine {706]. Morphine attenuated the amplified visceral
nociception in the external oblique muscle induced by
either glycerol or colorectal distension [788]. Animals with
unilateral stab wounds showed an increase in percent of paw
withdrawal (secondary mechanical hyperalgesia) without
thermal hyperalgesia with the former effect reversed by mor-
phine administration [81]. Intrathecal morphine, DAMGO
and fentanyl each induced scratching that was blocked by
intravenous naltrexone or the mu antagonist, clocinnamox,
but not by quaternary naltrexone, histamine antagonism or
kappa or delta antagonism [610]. Morphine produced anal-
gesia in mice sensitized to the intraplantar administration of
ovalbumin [896]. Whereas B&K Sprague-Dawley rats had
stronger morphine and methadone analgesia than the Mol-
legard strain, the latter had stronger buprenorphine-induced
analgesia. Mollegard rats metabolized morphine to M3G
to a greater degree than B&K Sprague-Dawley rats [158].
Morphine caused mild histopathological changes in rabbit
knee joints marked by synovial membrane inflammatory
hyperplasia and hypertrophy [295]. Single nucleotide
polymorphism 118G of the MOR gene has been associated
with decreased potency of morphine and M6G analgesia in
carriers of the mutated G118 allele [696]. Such changes can
be detected by a flexible computer simulation fo visualize

pharmacokinetic-pharmacodynamic models [697). Topical
application of morphine to cutaneous ulcers generally failed
to alter morphine or M6G plasma levels [9391.

3.2.1.2. Mu opioid agonists. DAMGO was more effec-
tive in blocking formalin-induced responses in non-diabetic
than in STZ-treated diabetic rats. Whereas a NOS inhibitor
blocked DAMGO-induced analgesia in both groups, a NO
donor only enhanced DAMGO-induced analgesia in non-
diabetic rats [1114]. The dermorphin tetrapeptide analogue,
TAPA produced naloxonazine-sensitive analgesia on the tail-
pressure and formalin tests whereas TAPA(NH2) produced
naloxonazine-insensitive analgesia on both measures [776].
Tyr-D-Ala-Gly-Phe-p-Nle-Arg-Phe displays high affinity for
MOR and stimulates regulatory G-proteins, and following
intrathecal administration, produces naloxone-sensitive anal-
gesia that is basically insensitive to either NTI or NBNI
[1128]. The peripheraliy-restricted, small molecule mu ago-
nist, DiPOA blocked CFA-induced mechanical hyperalgesia
and incisional-induced mechanical hyperalgesia, but failed
to affect neuropathic pain or alter basal tail-flick latencies
[1207]. Mu-delta interacting complexes exist because delta
receptor occupancy by antagonists enhances mu opioid bind-
ing and signaling activity as well as intrathecal morphine
analgesia [395]. The slower onset of analgesia induced by
mu- 1-selective dermorphin analogues appears to be due to
slower transport across the blood-brain barrier [281]. D-Nal3-
morphiceptin displayed increased MOR affinity and potency
on the hot-plate test than morphiceptin itself {343]. The mor-
phinan derivative, BU72 showed high affinity and efficacy
for MOR, was a partial DOR agonist and a full KOR agonist.
{ts analgesic effects were blocked by mu, but kappa and delta
receptors, and after these effects subsided, it blocked mor-
phine analgesia [824]. Endogenous opioids are found in the
brain and spinal cord of teleost fish, block avoidance learning
using electric shock, and reduce nociceptive behavioral and
physiological responses [1046].

3.2.1.3. Mu opiate agonists. Dihydromorphine, 6-acetyl-
dihydromorphine and dihydroheroin produced analgesic
profiles similar to M6G and heroin, and not morphine. They
were blocked by 3-O-methylnaltrexone and by AS probes
directed against exon 2, but not exon 1 of the MOR clone, but
were intact in morphine-tolerant mice [387]. Codeine was
effective in blocking lambda-carragenan-induced thermal
hyperalgesia because of increased brain uptake of the codeine
in the presence of chronic pain [456]. Codeine was less effec-
tive in producing analgesia in 3-day old rats relative those
aged 10 and 21 days or relative to adults [1212], Fentanyl pro-
duces analgesia that is followed by prolonged hyperalgesia
on the formalin and paw pressure tests as well as allodynia in
wild-type, but not PKC-gamma KO mice. Naloxone further
precipitated the hyperalgesic and allodynic symptoms fol-
lowing fentany] in wild-type but not PKC-gamma KO mice
[185]. Whereas fentanyl produced naltrexone-reversible
anti-allodynic effects in capsaicin and VR-1 agonist models
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as well as analgesia, peripherally-acting loperamide only
prevented the expression of capsaicin-induced allodynia, an
effect reversed by peripherally-acting methylnaltrexone in
anesthetized primates [163]. Tramadol decreases the second
phase of formalin pain following systemic and local adminis-
tration with the two routes producing self-synergism accord-
ing to isobolographic analyses [275]. Tramado! and bupiva-
caine produced comparable analgesic and anti-inflammatory
responses induced by formalin as morphine [384]. Norhydro-
morphone and hydromorphone-3-glucuronide, metabolites
of hydromorphone, displayed limited analgesic effects on
the formalin test [1289]). 7-Hydroxymitragynine has high
affinity for mu receptors, inhibits contractions of the guinea
pig ileum, and produces thermal analgesia greater than mor-
phine following subcutaneous and oral administration [738].
AAS01, a chimeric peptide with opiaid receptor agonist
and SP receptor antagonist properties, produced analgesia
following spinal administration [126]. Hydromorphone
and butorphanol administered alone or together produced
long-lasting increased thermal thresholds in cats [643].
Hydrocodone administered intrathecally for pain in sheep
elicited gating deficits and biting behavior over the infusion
site {539]. Remifentanil-induced analgesia was markedly
potentiated by transcutaneous electrical stimulation [553].
Mu agonists with 3,6-bis{Dmt-NH-(CH(2))n)]-2(1H)-
pyrazinones produce selective mu, but not delta affinity and
potent analgesia foltowing oral delivery [537); similar effects
are found with novel 2/,6'-dimethyl-L-tyrosine-containing
pyrazinone opioid mimetics [S38].

3.2.1.4. Endomorphins. Both central endomorphin-1 and -2
suppress cold-water allodynia in a naloxone-reversible and
naloxonazine-reversible manner in rats with sciatic nerve
damage. Continuous intrathecal endomorphin-1 infusions
blocked thermal hyperalgesia in carrageenan-treated rats,
effects augmented by adenosine or agmatine co-treatment
{578]. Endomorphin-1 dose-dependently increases synovial
vascular resistance that is blocked by CTOP, and eliminated
by adjuvant inflammation [744]. Synaovial inflammation by
kaolin and carrageenan induced endomorphir-1 immunore-
activity in the synovium, and exogenous endomorphin-1
reduced synovial vascular permeability, an effect blocked
by the mu antagonist, CTOP [743]. Endomorphin-2, but
not endomorphin-1 induced a CPP [501]. Analogues of
endomorphin-2 incorporating 2'6’-dimethyl-L-tyrosine at the
hydrophobic C-terminal extension produced MOR affinity
and potent analgesic effects [363].

3.2.1.5. BEND. POMC gene transfer using intramuscular
electroporation decreased the thermal hypersensitivity and
paw swelling observed in rats receiving CFA, and markedly
increased both plasma BEND and ACTH levels [217]. Like-
wise, electroporation of a transrepressor system (pTRE2-
POMC) increased spinal BEND and increased pain thresh-
olds in lims suffering chronic constrictioninjury; these effects
were blocked by doxycycline [1219]. BEND-like proteins

drawn from the ciliate, Tetrahymena blocked the mechani-
cal response of the ciliate Stentor and inhibited phagocytosis
in murine peritoneal macrophages in a naloxone-reversible
fashion [947]. Bum wound healing induced by diphoterine
was associated with higher concentrations of BEND [181].

3.2.1.6. Manipulations affecting Mu analgesia. A review
[852] discusses the upregulation of the pro-nociceptive and
anti-opioid peptide, CCK in the RVM during persistent opiate
exposure. CCK activates descending pain facilitation mech-
anisms from the RVM enhancing nociceptive transmission at
the spinal cord and promoting hyperalgesia. PAG DA deple-
tion with 6-OHDA affected only large multipolar neurons
but not small rounded cells, and decreased heroin and mor-
phine analgesia on the hot-plate, but not tail immersion tests.
D1, but not D2 DA receptor antagonism in the PAG pro-
duced a similar pattern of effects [352]. The protein kinase
G inhibitor, KT5823 blocked analgesia induced by morphine
and dipyrone, and produced an acute hypermnociception [969].
Both intrathecal dextromethorphan and MK-801 potentiated
morphine analgesia, but their combined treatment did not
produce any further enhancements [215]. The ability of dex-
tromethorphan to potentiate morphine analgesia following
intrathecal and ventricular administration failed tobe affected
by alpha-2 adrenergic or SHT2 receptor antagonism [216].
Intrathecal CART enhanced morphine analgesia on the tail-
ficik test without altering basal thresholds [262]. Although
intrathecal administration of the SHT(1A) agonist, 8-OH-
DPAT induced analgesia on the formalin and paw pressure
tests, it antagonized morphine analgesia, an effect blocked
by intrathecal pretreatment with the SHT(1A) antagonist,
WAY-100635. In turn, WAY-100365 potentiated morphine
analgesia in acutely-treated and morphine-tolerant rats [73].
The SSRI sertraline respectively increased and decreased
morphine analgesia on the hot-plate test after acute and
chronic (2 weeks) administration {8621, Whereas subcuta-
neous morphine analgesia was blocked by intrathecal admin-
istration of the muscarinic antagonist, atropine and M1/M4
antagonist, pirenzipine, but not by M2 or M3 antagonists,
intrathecal pirenzipine blocked ventricular, bat not intrathe-
cal morphine analgesia {486]. GIRK and GIRK-2 KO mice
exhibited thermal hyperaigesia, and displayed lower levels
of intrathecal morphine analgesia at higher, but not lower
doses [727]. Morphine analgesia on the paw pressure and
tail-flick tests was reduced by pretreatment with MIF-1, Tyr-
MIF-1, Tyr-W-MIF-1 or Tyr-K-MIF-1 [120]. The potentia-
tion of morphine analgesia by the L-type calcium channel
blocker, veraparmnil, was blocked by the peripherally-acting
opioid anatagonist, naloxone methiodide [1017]. L-type cal-
cium channel blockade-induced potentiations of morphine
analgesia are accompanied by increased serum, and to alesser
extent, brain levels of morphine [1018]. KO mice lacking the
R-type, but not the N-type, Ca2+ channel displayed greater
analgesic responses to moprphine and opioid-mediated warm
water swim stress as well as resistance to morphine toler-
ance [1248]. Whereas acute morphine increases phospho-
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inositide 3-kinase in the PAG, inhibition of this kinase shifts
the dose-response curve of morphine analgesia to the right
{811]. Whereas morphine produces analgesia on both thermal
and mechanical nociceptive tests, sodium channel block-
ing agents are preferentially effective on thermal thresholds
[975]. The neuraminidase inhibitor, oseltamivir, enhances
morphine analgesia, and prevents the hyperalgesic effects
of either ultra-low morphine doses or repeated morphine
tolerance [251). The mechanical allodynia and thermal hyper-
algesia caused by the chronic constriction model of the sci-
atic nerve was markedly reduced by morphine, THC and
the CB-1 agonist, CP55940, weakly reduced by gabapentin,
carbamazepine and baclofen, and unaffected by ketamine
and dizocilpine [278). The endothelin B antagonist, IRL
1620 failed to alter the magnitude or duration of morphine-
induced analgesia or hyperthermia [99]. Those opiate ago-
nists that induce robust beta-arrestin protein tramslocation
produce similar types of analgesia in wild-type and beta-
arrestin KO mice, whereas morphine and heroin that do not
promote beta-arrestin recruitment display enhanced analge-
sia in beta-arrestin KO mice [124]. Ar extract of roasted
coffee, 4-caffeoyl-1,5-quinide reduced morphine analgesia
and inhibited [3H]-naloxone binding in mice [274].

3.2.2. Delta agonists and receptors

Both DPDPE and Delt produced analgesia in DOR KO
mice, but produced either absent (tail immersion test) or
reduced {hot-plate test) responses in MOR KO mice. More-
over, DPDPE analgesia in DOR KO mice was blocked by
the mu antagonist, CTOP [992]. CFA treatment increased
both the membrane density of DOR as well as the ratio of
plasma membrane to intracellular DOR in wild type mice,
but not in MOR KO mice [792). An Enk-encoding her-
pesvirus reversed the thermal A-delta and C fiber-mediated
hyperalgesia induced by pertussis toxin with the C-fiber-
mediated actions blocked by mu and delta antagonists, and
the A-delta-fiber-mediated actions blocked by delta antag-
onists [(1243]. Enk-based opioid glycopeptides all produced
analgesic activity on the tail-flick test with disaccharides pro-
ducing greater potency than a tri-saccharide or bis- and tris-
monosaccharides [314]. Crotalus durissus terrificus venom
produces analgesia on a prostaglandin-induced mechanical
hyperalgesia model sensitive to delta and kappa antago-
nists; this effect is reduced by inhibitors of neuronal, but
not inducible forms of NOS as well as by an inhibitor of
guanylate cyclase [895].

3.2.3. Kappa agonists and receptors

KOR immunoreactivity in the lumbar spinal cord was
increased foltowing sciatic nerve ligation in wild-type mice,
but not NBNI-treated mice or KO mice lacking DYN or
G-protein receptor kinase 3. The NBNI and KO mice dis-
played greater tactile allodynia and thermal hyperalgesia
than wild-type animals after the lesion, and failed to dis-
play U50488H-induced tolerance after the lesion [1231].
CFA produced more intense hyperalgesia and spinal PDYN

mRNA up-regulation in adrenalectomized relative to nor-
mal rats [1275]. Repeated systemic or central U50488H
treatment enhanced analgesia and agonist-stimulated thalmic
[35S)GTPgammaS binding induced by morphine or delta
agonists, whereas repeated mu and delta agonist treatments
failed to alter these measures induced by US0488H [583]. The
kappa receptor agonist, bremazocine reduced carrageenan-
and prostaglandin E(2)-induced hyperalgesia of the rat paw,
effects reversed by NBNI, but not by ATP-sensitive K(+)
channel blockers, Ca(2+)-activated K(+) channel blockers or
non-selective K(+) channel blockers [25]. U50488H admin-
istration into the contralateral hindpaw 6-10 days after
mononeuropathy reduced mechanical allodynia and auton-
omy, but not thermal hyperalgesia, an effect in turn blocked
by peripherally-acting naloxone methiodide [109]. The kappa
agonist, TRK-820, blocked tactile allodynia and mechanical
hyperalgesia induced by herpes simplex virus type-1, effects
blocked by NBNI, but not naltrexone, and not subject to tol-
erance or cross-tolerance with morphine {1110]. A highly
potent kappa opioid agonist, D-Phe-Phe-p-Nle-D-Arg-NH2
(FE200041) produced peripheral hindpaw analgesia as well
as analgesia on the acetic acid writhing and formalin tests,

. effects blocked by general and kappa, but not mu opiate

antagonists [1157]. Chloroquine-induced scratching is abol-
ished by the kappa agonists, TRK-820 or ICI204,448 [513],
whereas TRK-820 inhibits morphine-induced scratching in
rhesus monkeys [1180]). Whereas PKC-gamma wild-type and
outbred mice displayed mechanical allodynia, thermal hyper-
algesia and increased spinal DYN levels after spinal nerve
ligation, neither PKC-gamma KO nor inbred 12956 mice dis-
played any of these symptoms following spinal nerve ligation
{375]. Two DYN derivatives, N-MT DYN A and N-MT DYN
A amide, produced greater analgesia in morphine-tolerant
rats [153]. Spiradoline, a kappa agonist produced more pro-
nounced analgesic effects in sedentary than exercising rats,
whereas exercising rats were more sensitive to spiradoline’s
locomotor and rewarding effects [1042]. A long-acting kappa
antagonist, JDTic blocked kappa-mediated (enadoline), but
not mu-mediated (sufentanil) analgesia in mice, and was
more effective than NBNI in shifting the dose—response curve
of U50488H-mediated analgesia and diuresis to the right in
squirrel monkeys {177].

3.2.4. OFQ/N and ORL-1 receptor

OFQ/N continues to present acomplex picture concerning
its role in pain responses producing both “pro-nociceptive”
and “anti-nociceptive” actions depending on such factors as
site of administration, dose and time course. This section
therefore presents these data separately.

3.2.4.1. Pro-nociceptive actions. OFQ/N administered into
the hypothalamic arcuate nucleus decreased thermal and
mechanical nociceptive thresholds and reduced systemic and
intra-arcuate morphine analgesia. The hyperalgesic effect
was blocked by an ORL-1 peptide antagonist [669]. The
enhanced hyperalgesia induced by OFQ/N in a rat car-
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ragechan inflammatory pain model is reduced by the ORL-1
antagonist, SB-612111 with the latter reversing morphine-
induced tolerance as well [1261). Long-term treatment
(26 days) with AS directed against the ORL-1 receptor
increased tail-flick latencies, body temperature, water intake
and alcohol-induced locomotor activity, and decreased corti-
costerone levels, grooming in the open field and time spent
in open arms of an elevated plus maze [116]. Intrathe-
cal morphine, but not endomorphin-1 increased pro-OFQ/N
and ORL-] mRNA in neuropathic rats, and intrathecal pre-
treatment with the ORL-1 antagonist, PhePsi potentiated
morphine analgesia in this neuropathic pain model [764].
OF(Q/N-induced pain responses were blocked by intrathe-
cal H1 histamine antagonists, unaffected by H2 antagonism,
and augmented by H3 antagonists. The OFQ/N nocicep-
tive responses were reduced in H1 receptor KO mice and
in mice receiving histamine antisera or histidine decarboxy-
lase inhibitors {977]. Intradermal OFQ/N induced scratching
in wild-type, but not ORL-1 KO mice, effects blocked by
naloxone and leukotrine B(4) antagonists [36]. An analogue
substituting sarcosine (N-Me-Gly) for glycine in the third but
not second position of OFQ/N produced hyperalgesia and
inhibition of electrically-induced contractions of the mouse
vas deferens in a naloxone-sensitive and ORL-1 antagonist-
sensitive manner [203].

3.2.4.2. Antinociceptive actions. Intrathecal OFQ/N sup-
pressed mechanical hyperalgesia in both diabetic and
moneoneuropathic rats in a naloxone-sensitive manner, and
displayed synergy with systemic morphine for both anal-
gesic effects [246]. Intrathecal OFQ/N produced an ORL-1
receptor-sensitive analgesia on bee-venom-induced persis-
tent spontaneous nociception, but failed to affect the pri-
mary thermal and mechanical hyperalgesia and inflammation
[1096]. OFQ/N immunoreactivity increased and ppOFQ/N
mRNA decreased in the NRM after electroacupuncture in
neuropathic rats [707].

3.2.5. Human studies

This section examines opioid analgesic effects in studies
involving volunteers, dental pain, chronic pain, cancer pain,
surgical pain, and pain related to cesarean section and labor.

3.2.5.1. Volunteers. Morphine produced analgesia, but not
sedation, according to electroencephalographic power spec-
tra and behavioral measures in volunteer subjects [909).
Gender, ethnicity and temperament contribute to individual
variation in thermal and cold pain sensitivity by interactions
with the vanilloid receptor subtype 1 and delta opioid recep-
tor subtype I genes [592]. Adult volunteers displayed linear
and dose-proportional effects following oxymorphone under
both single-dose and steady state conditions for the parent
compound and its meatbolites [5]. Oxycodone and morphine
analgesia on the cold-pressor test fail to display synergis-
tic analgesic effects [406]. Combinations of ketamine and
morphine were more effective than either drug alone in reduc-

ing wind-up pain in both primary and secondary hyperal-
gesic areas elicited by a skin burn injury [1000]. Intranasal
hydromorphone demonstrated nasal drug absorption and pre-
dictable accumulation after repeated treatment in human vol-
unteers [965]). Naloxone increased fMRI activation in the
insuia, orbitofrontal cortex, thalamus and hippocampus of
healthy human volunteers exposed to a 46 °C heat stimulus
to the back of the hand [129].

3.2.5.2. Dental pain. Combinations of hydrocodone and
ibuprofen were more effective in controtling pain after peri-
dontal surgery than ibuprofen alone {96]. Paracetamol was
as effective as morphine in acute and repeated administra-
tion paradigms for postoperative dental pain [1155]. Etori-
coxib was more effective than an oxycodone-acetaminophen
combination in analgesic duration, pain relief and use of
rescne opioids following extraction of two or more molars
[192]. A single dose of rofecoxib was as effective an anal-
gesic as an oxycodone—acetaminophen combination for oral
surgery [191] and removal of the third molars [621]. A COX-
2 inhibitor, etoricoxib was more effective than combined
acetaminophen-codeine in relieving pain following removal
of the third molars [717]. Pain associated with removal of
impacted third molars was equivalently affected by preoper-
ative ibuprofen (600mg), diclofenac (100 mg), and parac-
etamol (1g) with codeine (60 mg) [546]. A combination
of codeine, acetaminaphen and ibuprofen appeared to have
longer post-operative analgesic effects than a combination of
tramadol and acetaminophen following dental surgery [550].

3.2.5.3. Chronicpain. A review [831] discusses the useofa
combination of nonopioid and moderate opioids (oxycodone,
codeine, tramadol) for moderate pain and a combination of
nonopioid and a potent opioid (morphine) for strong pain
in older patients with chronic non-malignant pain. Although
morphine use increased in Oregon and the United States from
1997 to 1999, the use of morphine in the last week of life for
dying patients did not increase correspondingly [1124]. Cen-
tral neuropathic pain patients displayed significant decreases
in opioid recepior binding in the dorsolateral and anterior
cingulate cortex, insular cortex, thalamus and inferior parietal
cortex using PET imaging [544]. Increases in the use of more
potent optoids for the treatment of chronic musculoskele-
tal pain were observed between 1980 (8%} and 2000 (16%)
[180]. Use of opioid anagesics for pain treatment remains
very low in Slovakia relative to use in Denmark, Canada and
Austyia [502]. In contrast, strong opioids were used in 68% of
patients receiving palliative care in Germany [817]. Morphine
18 generally effective in affording pain relief in patients with
non-malignant musculoskeletal disease with adjustments in
dose and regimen following any adverse effects [210]. Both
fibromyalgia and low back pain increased CSF Menk-Arg6-
Phe7, and these levels were inversely correlated to systemic
pain thresholds [72]. Nebulized morphine was effective in the
managetnent of chronic chest pain from sickle cell painful
episodes [69]. Patient-controlled intra-nasal fentanyl was



2010

Reproduction, representation et diffusion interdites. Loi du 01/07/92.

2642 R.J. Bodnar, G.E. Klein / Peptides 26 (2005) 2629-2711

sithilar to oral morphine for relief of procedural wound
care pain in burn patients {347]. African patients treated for
malaria fever with chloroguine develop severe generalized
pruritus that can be reduced by treatment with naltrexone
or the anti-histaminergic, promethazine [12]. Remifentanil
was more effective than morphine in providing analgesia and
sedation in mechanically-ventilated and critically-ill patients
{2601. Sufentanil was 7.5 times more effective than fentanyl
for treating chronic pain in patients receiving prior long-
term opioid treatment [936]. Patients with chronic non-cancer
pain who receive controlled release oxycodone or transder-
mal fentanyl are less likely to switch pain therapy than those
receiving controlled release morphine [93]. Sustained release
oxycodone was prescribed more than twice daily (every 8 h)
in 67% of chronic pain patients [724]. Valdecoxib was as
effective as oxycodone and acetaminophen in treating emer-
gency room patients with acute musculoskeletal pain [698].
Patients with chronic back pain displayed the greatest inten-
sity when there was an absence of endogenous opioid anal-
gesia to acute pain and in a High Disability group [151].
The Mulligan Mobilization with Movement treatment tech-
nique produced naloxone-insensitive hypoalgesia in patients
with chronic lateral epicondylaigia [874]. Patients with clus-
ter headaches displayed lower plasma OFQ/N levels during
the headache than before or after it, an effect that acted inde-
pendently of sex, age or episode duration [320]. Patients with
chronic critical limb ischemia and treated with spinal cord
stimulation displayed higher plasma BEND, DYN and Menk
levels after the system was switched off, and higher Menk
levels when the system was re-initiated [353]. Fractures of
both arms produce immediate increases in plasma BEND
that dissipates with healing [540]. Patients removed from
life support in an intensive care unit showed similar tempo-
ral patterns of death regardless of whether they were treated
with narcotics or benzodiazepines for discomfort [190}]. Nal-
trexone displayed effectiveness for the treatment of uremic
pruritus in a subset of patients [656]. Family physicians are
more comfortable in prescribing NSAIDs, tylenol + codeine,
morphine + MS contin or percocet than prescribing dilaudid,
hydromorphone contin, fentanyl patches or methadone for
chronic non-cancer pain [990).

3.2.5.4. Cancer pain. Intrathecal and epidural administra-
tion of opioids produced similar degrees of pain relief in the
treatment of refractory cancer pain [160]. Cancer pain and
morphine requirements appear to be increased in patients
with the 118 A > G polymorphism of the MOR gene [607].
Day-to-day variation of merphine and its metabolites was
lower in cancer patients recetving subcutaneous morphine
than for oral morphine [606]. Delivery of sustained release
morphine doses correlated with plasma morphine, M6G and
M3G levels in cancer patients, but only correlated with
plasma M6G and M3G in non-cancer pattents. However,
correlations between the pain score and plasma morphine,
M6G and M3G levels were weak in both patient groups
[33]. An intravenous dose of morphine that is 20% of the

basal oral dosage is very effective in treating episodic break-
through pain in cancer patients {758]. Indeed, the intensity
of incident pain in bone cancer may be reduced by increas-
ing the opioid dose above that effective for controlling pain
at rest [759], particularly by administering a second opi-
oid [760]. Administration of controlled release oxycodone
preoperatively reduced by half the amount of postopera-
tive intravenous patient controlled opioid consumption in
breast cancer surgery [563], and was effective in opioid-
naive cancer patients [616). Cancer patients maintained on
controlled-release oxycodone could be switched to extended-
release oxycodone needing half the effective dose to stabilize
pain [366]. Oral transmucosal fentanyl citrate was found to
be effective in the treatment of breakthrough cancer pain
[441]. Transdermal fentanyl produced superior pain relief and
increased global quality of life in patients receiving radiother-
apy for metastatic bone pain [897]. Cancer patients could be
switched from transdermal fentanyl to oral methadone for the
treatment of somatic, but not neuropathic pain [91]. Patients
with metastatic cancer pain initiated long-acting opioid ther-
apy 3-4 months before death, and 50% received less than
60 days of long-acting opioid therapy [94). Methadone was
less effective than morphine in the treatment of cancer pain
over a 4-week period [152). Transdermal fentanyl was more
effective than sustained release oral morphine in chronic pain
patients, whereas both were equally effective in chronic can-
cer patients [225], and this treatment produced satisfaction
in a large cohort with cancer [802]. Hospice patients treated
for cancer pain with higher morphine doses showed longer
survival times than patients with lower morphine doses; the
former patients had higher incidences of gastrointestinal,
lung, ovarian and brain carcinomas [92]. Opicid rotation
was effective in treating pediatric cancer pain by reducing
dose-limiting side effects and maintaining analgesia [301].
Switching from morphine to another opicid for treatment
in cancer pain occurred in older patients, those with a high
white cell or platelet count, or with severe organ impairment
[941]. A survey of veterans receiving combined oxycodone-
acetaminaphen prescriptions indicated that this regimen was
given more often for thase with cancer, and a higher dose reg-
imen was related to duration, older age and diagnosis with
HIV/AIDS [471]. Radiotherapy is ineffective in altering the
necessary motphine doses in patients with bone metastasis
from lung cancer [515].

3.2.5.5. Surgical pain. Caucasian and Hispanic patients
failed to differ in either the amount of morphine prescribed or
self-administered following surgery [6). Elderly Australian
caridiac surgery patienis received less morphine and were
refused morphine more often than younger patients, and
females indicated less satisfaction with pain relief than males
[1253]). Opioid consumption in hospitals increased from 56 to
100 mg per surgical procedure between 1990 and 1999 [312].
The addition of background morphine infusions enhanced
analgesia and consumption of patient-controlled morphine
after cardiac surgery [421] and elective spine surgery [84].
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* The néd for rescue analgesia in post-operative patients was
associated with the initial visual analog score for pain and
the degree of sedation [49]. Patients undergoing extracor-
poreal shockwave lithotripsy for urinary calculi displayed
less post-operative pain and greater satisfaction with analge-
sia after receiving dexmedetomidine and merphine relative
to tramadol and midazolam [19). Dexmedetomide treatment
before completion of surgery reduced by 66% the early
postoperative need for morphine to maintain analgesia [43].
Diabetic patients undergoing abdominal hysterectomy had
higher short-term and long-term morphine consumption, and
reported higher pain scores than non-diabetic controls [567].
Short-term post-operative pain control was observed with
morphine in the absence of hemodynamic factors with greater
analgesia in men and greater satisfaction in women [642]. An
iontophoretic PCA transdermal system indicated that fen-
tanyl and morphine were equally effective for post-operative
pain [1173]. A dose-response relationship exists between
morphine’s effective dose and the incidence of clinically
meaningful events after ambulatory laparescopic cholecys-
tomy [1286]. Combination of ultra-low doses of naloxone
with morphine in surgical patient controlled analgesia does
not affect analgesia or opioid requirements, but decreased the
incidence of nausea and pruritus [187]. Post-operative con-
trolled release oxycodone was more effective than tramadol
and metamizol combinations following retinal surgery [571].
Controlled-release oxycodone was as effective as morphine
in a pediatric spinal fusion population {257] as well as for
knee arthroplasty (10]. Continuous post-operative subcuta-
neous morphine produced pain relief and lower analgesic
consumption in patients undergoing spinal fusion for idio-
pathic scoliosis [712]. Intrathecal morphine provided supe-
rior analgesia and lung volume in patients receiving off-pump
coronary artery bypass grafting [754] as well as produc-
ing analgesia in children receiving cardiac surgery [1097].
Intrathecal morphine during radical prostatectomy decreased
pain and supplemental intravenous morphine, but increased
pruritus during the first post-operative day [148]. Transcuta-
neous electrical nerve stimulation during total knee arthro-
plasty failed to change the need for patient controlled mor-
phine analgesia after surgery [141]. Combined femoral and
sciatic blocks were more effective than epidural analgesia
for unilateral knee arthroplasty [271]. A pump containing
combinations of acetaminophen, rofecoxib, tramadol, dex-
amerthsone and bupivacaine decreased opioid use and hos-
pital stay in patients receiving total hip or knee arthroplasty
[£034]. Narcotic use and pain reports were quite similar for
four groups of patients undergoing different levels of anterior
cruciate ligament surgery (78] Intra-articular administration
of kertolac [169] or sufetanil [574] provided better pain relief
than bupivacaine or morphine during knee arthroscopy. Com-
bined intra-articular morphine and ropivacaine increased
knee flexion, reduced hospital stay and reduced the number
of days before the patient was walking on crutches in patients
with total knee replacement [922]. Intra-articular morphine
was superior to intramuscular morphine for post-operative

pain after knee arthroscopy [918]. Intrathecal morphine dur-
ing spinal anesthesia in arthroscopic knee surgery severely
proiongs post-surgical latencies to urinate [427]. Increased
BEND expression elicited by inflammation of synoival tis-
sue failed to shift the dose-response curve of intra-articular
morphine [675]. Subachromial ropivacaine PCA after arthro-
scopic shoulder surgery provided effective postoperative pain
relief [452]. Patient-controlled analgesia with morphine was
found to be safer and better than either femoral nerve block or
psoas compartment block after total-hip arthroplasty surgery
[106).

Continuous sciatic peripheral nerve blocks with ropiva-
caine reduced pain from total knee arthroplasty [90]. Ropi-
vacaine infusions into the wound after spinal fusion surgery
decreased pain scores and rescue medication requirements
to a greater degree than morphine infusions [105]. Inter-
costal block with bupivacaine and intravenous morphine
PCA is very effective in post-thoracotomy pain manage-
ment [233] as well as after loin incision [53]. Levobupiva-
caine and ropivacaine were equally effective when paired
with morphine for pain relief following abdominal surgery
[1008). Continuous subacromial bupivacaine failed to alter
the incidence of morphine consumption or subjective pain
in patients undergoing acromiplasty and rotator cuff repair
[131]. Subcutaneous bupivacaine in the wound after open
appendectomy failed to affect post-operative pain and mor-
phine consumption in children [530], but decreased post-
operative opioid requirements in adult patients receiving
transperitoneal laparoscopic renal and adrenal surgery [581]
as well as adult appendectomy [694]. Clonidine administered
systemically or caudally was equally effective in enhanc-
ing bupivacaine-induced caudal blocks in pediatric hypospa-
dias repair [444] and for orthopedic surgery [1087]. Peri-
operative administration of lidocaine [620} and rofecoxib
[1024] during abdominal surgery reduced surgical pain and
post-operative morphine consumption [620]. Pre-operative,
low-dose ketamine failed to alter post-operative morphine
consumption or pain scores in patients undergoing radical
prostatectomy [570], but was effective in reducing post-
operative oxycodone consumption following cardiac surgery
[639] and was effective in combination with morphine in
patients undergoing prostaiectomy [1047]. A similar pat-
tern of interactive analgesic effects was observed following
oral administration of the non-competitive NMDA antag-
onist, amantadine and morphine in prostatectomy patients
[1048]. Oral dextromethorphan reduced the need for peri-
operative administration of fentanyl in children undergoing
typanomastoid surgery {453] that was related to treatment
of post-operative nausea and vomiting associated with high
pain ands opiate administration [454]. In children under-
going tonsillectomy, acetaminophen and codieine did not
provide adequate pain relief in either around-the-clock or
as needed dosing regimens [1099], but morphine was more
effective than tramadot and ketamine for pain relief {1145].
{OX-2 inhibitors were more effective than opioid-containing
analgesics and similar to NSAIDs in post-operative pain
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management [202]. The use of intra-operative magnesium
sulphate with morphine produced greater short-term pain
relief in open cholecystectomy patients, but did not decrease
the post-operative morphine requirement [101]; controlled-
release codeine was as effeclive as controlled-release codeine
and acetaminophen for this type of surgery [219]. Combina-
tions of diclofenac and paracetamol decreased post-operative
morphine consumption and lowered pain scores in patients
undergoing cardiac surgery [332]. Early extubation failed to
alter postoperative pain control or use of opioid analgesics
after cardiopulmonary bypass surgery [890]. The factors
involved in cholecystomy patient satisfaction with pain relief
included treatment regimen, age, worst pain experienced,
pain interference with functioning, morphine equivalent dose
and opioid-related side effects [529]. Remifentanil infusion
during abdominal surgery modified intraoperative hemody-
namic stability, and had little influence on postoperative mot-
phine consumption [111]. Remifentanil was as effective as
morphine and fentanyl in cardiac surgery with fewer bouts
of nausea or vomiting [426]. Oral rofecoxib was better than
intravenous ketoprofen in reducing pain and requiring PCA
morphine in patients with urologic surgery [165], and was
similar to ketorolac in controlling post-cperative pain fol-
lowing orthopedic surgery [554]. Combinations of parecoxib
and valdecoxib were more effective than placebo in reduc-
ing symptoms of distress and post-operative morphine use
in patients undergoing laparoscopic cholecystomy surgery
(370]. Gabapentin administered before and during abdomi-
nal hysterectomy reduced post-operative morphine consump-
tion without affecting pain scores [291]; a similar pattern of
results were observed in patients undergoing spinal surgery
[1139]. Combinations of the beta-blocker, esmolol and fen-
tanyl during perioperative hysterectomy reduced anesthetic
and fentanyl use as well as subsequent PCA morphine [211].
Combination of nefopam and morphine for post-operative
minor surgical pain failed to be greater than the analgesic
effects of each compound alone [85]. Tissue oxygen tension
was higher and pain scores were lower after breast recon-
stuction surgery using paravertebral levobupivacaine relative
to intravenous morphine [156]. Chronic pancreatitis patients
who had previous opioid use displayed more advanced dis-
ease symptoms than opioid non-users [16). Nerve stimulation
guidance was effective in placing epidural catheters fro pain
relief during pediatric surgical procedures {1135].

3.2.5.6. Cesarean and labor pain. PCA applied epidurally
was superior to PCA applied intravenously for pain relief dur-
ing labor with no increased incidence of obstetrical interven-
tion [436]). Combined sub-arachnoid morphine and clonidine
increased postcesarean analgesia, reduced opioid require-
ments and increased intraoperative sedation than the agents
applied individually [860]. Intrathecal bupivcaine paired with
morphine was as effective as intrathecal ropivacaine paired
with morphine for pain relief during cesarean delivery [265).
The ED50 and ED95 were determined for intrathecal bupiva-
caine analgesia coadministered with opioids during cesarean

delivery, and it was determined that delivery should be
made by a catheter-based technique [389]. Intratheca! sufen-
tanil for labor analgesia showed a chronopharmacological
thythm with 12h peaks at midnight and noon [279]. Sub-
arachnoid anesthesia produced greater sensory block in preg-
nant women relative to patients receiving total abdominal
hysterectomy, but the pregnant group required more intra-
venous morphine after the operation [329]. PCA diamorphine
offered no increased pain relief during labor than the intra-
muscular route of administration {747]. Ondansetron failed to
alter the incidence or severity of intrathecal fentanyl-induced
pruritus during labor [1201]. Listening to music under anes-
thesia did not reduce perioperative stress hormone release
or post-operative opioid consumption in patients undergoing
gynecological surgery [763].

3.3. Sex, age and genetic differences

So-called organismic variables play vital roles in the medi-
ation of opioid analgesic responses, and continue to attract
a great deal of attention; therefore, this section summarizes
sex (Section 3.3.1), aging (Section 3.3.2) and genetic (Section
3.3.3) differences.

3.3.1. Sex

A review [250] summarizes the gonadal steroid modula-
tion of pain and analgesia in animals and humans, describ-
ing mechanisms by which ‘males’ and ‘females’ biology
may differentiaily predispose them to pain and the anal-
gesic effects of drugs and stress in terms of both quality and
quantity. Another review-[345] indicates that whereas human
sex differences in opioid analgesia in clinical oral surgery
settings demonstrate greater kappa agonist-induced analge-
sia in women, laboratory models using human volunteers
demonsirate greater mu agonist-induced analgesia in women.
The differences in human (women with greater analgesia)
and animal (males with greater analgesia) models suggest
that the models themselves may be mechanistically differ-
ent, and could be due to such factors as pharmacokinetics,
pharmacodynamics, gonadal hormone effects, genetic influ-
ences, balancing of analgesic and anti-analgesic processes
and psychological factors. Long-term (2 week) exposure to
the essential oil extracted from citrus lemon induced female-
specific decreases in formalin-induced pain while both sexes
displayed increases in tail-flick latencies [184]. Estradiol
increased formalin-induced licking behaviors in male rats,
an effect blocked by BFNA and the estradiol antagonist,
ICI 182780. Formalin also produces an estradiol-reversible
reduction in interferon-gamma production [183]. Formalin
administered into the temporo-mandibular joint produced
greater pain behaviors in diestrous females than in males
or proestrous females; US0488H produced NBNI-reversible
analgesia with greater effects in diestrous females [228]. Pair-
ing ultra-iow doses of naltrexone with morphine enhanced
morphine analgesia in mature female rats, an effect inversely
correlated to the antagonist dose. Ultra-low doses of nal-
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trexone‘paired with morphine dose-dependently and linearly
decreased morphine analgesia in mature male rats [437]. Cas-
tration produces analgesia on the formalin test that is potenti-
ated by the SSRI, fluoxetine and the TP antagonist, flutamide;
these effects are reversed by naloxone or the SHT nerotoxin,
5,7-DHT [821]. Male, but not female mice display potentia-
tions in morphine analgesia on the tail withdrawal test follow-
ing non-competitive NMDA antagonists (dextromethorphan,
dextorphan, MK-801) at low, but not high morphine doses,
and following competitive NMDA antagonists (LY235959,
L-~701324} at both doses of morphine [825]. Assessment of
naltrexone effects on the cold-pressor test revealed similar
increases in ACTH, BEND, prolactin and cortisol in men and
women with the latter displaying greater pain, less pain toler-
ance and finally, lower pain ratings following naltrexone [13].
Although the general pattern of KOR immunoreactivity in the
lumbo-sacral dorsal horn was similar in males and females,
it was denser in estrous and proeastrous females relative to
males, particularly a greater proportion of cytoplasmic KOR
labeling within axon terminals [450]. Sex differences were
not observed in the pharmacckinetic and pharmacodynamic
analgesic effects of M6G in human volunteers [954]. Female
patients treated for pain in an emergency room experienced
better pain relief scores following butorphanol than morphine
[768].

3.3.2. Aging

Aged rats display more pronounced CFA-induced hyper-
algesia and up-regulation of spinal DYN expression relative
to young animals [1276]. Consistent with human autoradio-
graphic data, mu opioid binding increased at a rate of 0.9%
per year in the left temporal cortex after MRI-based partial-
volume correction using PET [88]. Senescent female mice
display reduced levels of U5S0488H-induced analgesia, but
unlike younger intact females, display sensitivity to MK801-
induced reversal of U50488H analgesia [1078]. Whereas
1-day-old mice show enhanced pain behavior relative to 1-
week-old animals, the latter show enhanced morphine analge-
sia relative to the latter. Male neonates show greater morphine
analgesia than females [1079).

3.3.3. Genetic differences

A review [440] proposes that variances in the 3’ untrans-
lated region (39-UTR) of the MOR gene might participate
in the variability of the opioid responses observed individ-
ually in humans and interstrain differences in non-human
subjects,

3.4. Opioid mediation of other analgesic responses

This section summarizes studies that indicate that analge-
sia elicited by a wide range of peptides and transmitters can
alternatively and respectively be sensitive (Section 3.4.1} or
insensitive (Section 3.4.2) to opioid manipulations vsing ago-
nists, antagonists and transgenic knockouts.

3.4.1. Opioid-sensitive analgesic responses

The amount of electrical stimulation of the NRM to
suppress A-delta-mediated nociceptive responses was twice
as high as that needed for C-fiber- mediated nocicep-
tive responses. Whereas intrathcal administration of general
and delta-1 antagonists blocked NRM stimulation-produced
analgesia mediated by both fiber populations, mu-1 and
delta-2 antagonists preferentially reduced C-fiber-mediated
NRM stimulation [702]. CCK(2) receptor KO mice dis-
played naloxone-reversible mechanical hyposensitivity and
expressed higher levels of lumbar delta and kappa recep-
tors. When experimental neuropathy was induced, CCK(2)
receptor KO mice failed to display mechanical hyperalgesia
and showed increases in POMC and delta opicid recep-
tors [634]. Acetaminophen produced analgesia that was
effectively blocked by general, mu and kappa, and to a
lesser degree, delta opioid antagonists [157]. Analgesic self-
synergy between combined supraspinal and spinal admin-
istration of acetaminophen was blocked by mu, delta and
kappa antagonists [914]. Synergistic analgesic interactions
between morphine and NS AIDs were blocked by mu, but not
delta or kappa antagonists [771]. Naloxone-reversible syn-
ergistic interactions were noted for systemic and intrathecal
administration of tramadol and the NSAID, naproxen, but
not rofecoxib [988]. Both carbachol and morphine admin-
istered into the central nucleus of the amygdala produced
analgesia on the vocalization test in guinea pigs that were
both blocked by naloxone pretreatment in the same site
[658}. C-fiber EMG activity in hindlimb flexor muscles
was similarly reduced by morphine, the NMDA antagonist,
MK-801 and following systemic and NRM administration
of the nicotinic agoinist, epibatidine [913]. Placentophagia
during parturition significantly enhanced analgesia induced
by delta (DPDPE) and kappa (U62066, spiradoline) ago-
nists, but decreased analgesia induced by mu (DAMGO)
agonists [293]. A soy diet ameliorated secondary mechan-
ical hyperalgesia induced by sarcoma cells introduced to the
femur, but had no effect on primary mechanical hyperalgesia
in the calcaneus model or on movement-induced hyperal-
gesia in the humorus model; morphine dose-dependently
reversed the three hyperalgesic models in all diet groups
[1284]. Oxytocin-induced analgesia was blocked by general,
mu and kappa, but not delta opioid antagonists in thermal
and mechanical pain withdrawal tests [372]. SP administered
into the ventrolateral PAG produced analgesia blocked by
a NK-1 receptor antagonist. Systemic morphine increased
SP release in the ventrolateral PAG [957]. The prokinetic
compound, domperidone reduced both the first and sec-
ond phases of formalin pain in a naloxone-reversible man-
ner [1030). THC, like morphine produces analgesia in both
arthritic and non-arthritic rats with NBNI-induced antago-
nism of THC analgesia observed only in arthritic rats. THC
increases DYN in non-arthritic rats and decreases DYN in
arthritic rats [248]. THC and morphine enhanced each other’s
reductions of formalin-induced pain, increased thalamic 5-
HT and reduced locomotor activity [346]. NE administered
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directly into inflamed hindpaws produces analgesia that is

blocked by alpha(1), alpha(2) and beta(2) adrenergic antago-
nists, by mu and delta antagonists, by antisera raised against
BEND, ard by chemical sympathectomy {113]. Acute or
chronic administration of clonidine elicited a subsequent
delayed tactile hypersensitivity that increased DYN con-
tent in the lumbar spinal cord and that could be reversed
by either MK-801 or DYN antiserum [910]. The GABA-
A antagonist, bicuculline administered into the thalamic
nucleus submedius produced naloxone-reversible analgesia
and enhanced morphine-induced analgesic actions with the
latier effect blocked by the GABA-A agonist, muscimol
[534). The activation of spinal and supraspinal NPFF and
NPFF2 by inflammation and neuropathic pain was further
activated by acute, but not chronic morphine [835]. The SSRI,
fluoxetine decreased the inflammatory response to subplan-
tar carageenan in a partial naloxone-sensitive manner {2].
Likewise, the SSRI, paroxetine increased hot-plate latencies
in mice, effects blocked by naloxone and ondansteron, but
not by ketamine [304). Amytriptaline produced a synergis-
tic interaction with morphine in producing analgesia on the
cutaneous orofacial formalin pain test [704]. Chronic admin-
istration of the antidepressant, nefazodone increased tail-flick
latencies and decreased immobility on the Porsolt swim test,
while increasing the density of MOR in the frontal and cingu-
late cortices, DRN and PAG [851]. Selective adenosine-2B,
but not adenosine-1 or -2A, antagonists produced analge-
sia, that when paired with morphine, enhanced the latter’s
effect. In contrast, adenosine-3 antagonism produced ther-
mal hyperalgesia [3]. Intracisternal NMDA induced scratch-
ing and blocked the late phase of the formalin-induced
hyperalgesic response, effects reversed by naloxone [650].
The AMPA/GIuRS antagonist, NS1209 produced compara-
ble responses to systemic morphine on the hot-plate and for-
malin analgesic assays, on mechanical allodynia and hyper-
algesia following chronic constriction injury, and reduced
cold hypersensitivity to ethyl chloride [114]. NPY adminis-
tered into the PAG increased paw withdrawal latencies in
mononeuropathic rats, an effect blocked by Y1 and opi-
ate receptor antagonists [1188]. Intracisternal administra-
tion of interleukin-1 beta blocked NMDA-induced scratching
responses in a naloxone-sensitive manner [593]. Intrathecal
galanin produced analgesia on the formalin test through acti-
vation of the GalR1 rerceptor, and isobolographic analyses
demonstrated synergy between galanin and either morphine
or AP5 [499]. Intrathecal melatonin increased mechanical
nociceptive thresholds that were reversed by naloxone and the
melatonin antagonist, luzindole [849]. Melatonin-induced
analgesia on the formalin test was blocked by the ML2 antag-
onist, prazosin, but not the ML1 antagonist, luzindole. This
analgesic effect was naloxone-insensitive, but enhanced by
cotreatment with morphine [926]. LiCl administered 24 h
prior to morphine reduces the latter’s analgesic effects, an
effect reversed by central and peripheral naloxone and periph-
eral naloxone methiodide administered before LiCl. Nalox-
one methiodide administered after LiCl, but before mor-

phine failed to block the reduced analgesic effect [543].
Trans-resveratol, a polyphenolic compound with antioxidant
properties, produced naloxone-reversible analgesia follow-
ing acute (reatment and tolerance following chronic treatment
[425]. Low-frequency transcutaneous electrical stimulation
of a carrageenan-treated inflammed paw blocked hyperalge-
sia it a naltrexone-reversible fashion [935]. Whereas nalox-
one in the thalamic submedius blocked analgesia induced
by high-, but not low-frequency acupuncture, naloxone in
the anterior pretectal nucleus blocked analgesia induced
by low-, but not high-frequency acupuncture [1294]. Both
acute and chronic electroacupuncture treatment significantly
reduced mechanical allodynia, but not thermal hyperalge-
sia induced by CFA in a naloxone-sensitive manner [500].
Electoracupuncture significantly reduced mechanical allo-
dynia induced by a neuropathic mode! of inferior caudal
trunk injury; this effect was blocked by spinal mu and delta,
but not kappa antagonists [596]; a similar pattern of effects
was noted for the hyperalgesia induced by CFA [1277].
Peripheral electrical stimulation relieved neuropathic pain
induced by lumbar spinal ligations in a naloxone-reversible
manner for up to 12h. Repeated exposure failed to display
tolerance [1094]. Exposure to weak (1 pnT) complex mag-
netic fields produced thermal analgesia that was enhanced
by morphine and blocked by naloxone [732]. Intraplantar,
but not subcutaneous injection of CRF produced naloxone-
reversible analgesia in CFA-treated rats, an effect reduced by
depletion of polymorphonuclear cells expressing CXCR2,
MIP-2 and keratinocyte-derived chemokines [137]. CRF-
induced immune-derived analgesia is decreased inrats under-
going cyclosporin-induced immunosuppression that destroy
BEND-containing immune cells [470]. Both isomers of mep-
tazinol blocked the thermal hyperalgesia induced by car-
rageenan in a naloxone-sensitive manner [1190]; the same
pattern of effects was observed after intrathecal meptazinol
administration [1271]. Bovine milk-derived lactoferrin sup-
pressed the development of arthritis and hyperalgesia induced
by CFA in a naloxone-reversible manner {458]. Lactofer-
rin produced analgesia and potentiated morphine analge-
sia on both phases of the formalin test, effects that were
blocked by mu receptor antagonism and NOS irhibition
[460]. The 1-substituted methyl and pohenyl analogues of
pyrazolines each produced analgesia on the tail immersion
test with the latter, but not the former blocked by nalox-
one [1107]. Sub-analgesic doses of nefopam, a monoamine
uptake inhibitor and morphine blocked the thermal hyper-
algesic and mechanical allodynic responses induced by cat-
rageenan or incisions [391]. Insulin produced antinociception
that was potentiated by morphine and blocked by nalox-
one [40]. ACTH produced analgesia on the tail-withdrawal
test that was blocked by naltrexone, but unaffected by defi-
cient glucocorticoid production [123]. A naturally-occurring
enantiomer in essential oils, (—)-linalool produced naloxone-
reversible analgesia on the hot-plate and formalin tests
[875]. Access to a 32% sucrose solution produced sig-
nificantly greater analgesic effects to morphine across a
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dose-response curve in a naltrexone-reversible manner
[264].

3.4.2. Opioid-insensitive analgesic responses

Ultra-low doses of morphine reduce the analgesic effects
of mu (morphine, DAMGO), delta (Delt) and kappa
(US0488H) agonists, effects in turn blocked by nalox-
one and (+)-naloxone, but not 3-methoxynaltrexone. This
anti-analgesic response was unaffected by delta, kappa or
NMDA antagonists as well as antisera directed against
DYN, Lenk, Menk, BEND, CCK or SP [1221]. Clonidine-
induced analgesia on the formalin test was reduced by
NOS and guanyl cyclase inhibition, but not by nalox-
one [273]). CRF produced lesser magnitudes of analge-
sia than morphine in rats given a thermal injury. The
D2 receptor antagonist, prochlorperazine increased hot-
plate latencies that were blocked by D2 receptor ago-
nists and M1 muscarinic antagonism and AS probes, but
not by naloxone [386}. Mesh chambers used to accumu-
late fluid showed that corticosterone and BEND levels in
CRF-treated rats were similar to controls [188]. Analge-
sia elicited by the NSAID, S-(+)-ketoprofen was blocked
by ventricular 5-HT(1)/5-HT(2)/5-HT(7) antagonism with
methiothepin and intrathecal 5-HT(3)/5-HT(4) antagonism
with tropisetron, but not by naloxone or NO agents [286].
Paclitaxel, a chemotherapeutic for treatment of solid tumors,
produces pain that is blocked by the selective T-type Ca(+)-
channel blocker, ethosuximide, but not by morphine or
the NMDA antagonist, MK-801 [350]. Both diazoxide and
diclofenac, ATP-sensitive K+ channel openers produced
naloxone-insensitive blockade of hyperalgesia induced by
prostaglandin E2 [22,23]. Riboflavin (Vitamin B2) pro-
duced naloxone-insensitive analgesia on the formalin test,
but failed to affect tactile allodynia in a spinal nerve lig-
ation model [407]. Acupoint stimulation with diluted bee
venom reduced the thermal hyperalgesia, but not the mechan-
ical allodynia induced by chronic constrictive injury, an
effect blocked by intrathecal administration of the alpha2-
adrenoceptor antagonist, idazoxan, but not naloxone [950].
Whereas morphine’s analgesic actions are decreased in STZ-
induced diabetic rats, the reversal of carrageenan-induced
thermal and mechanical hyperalgesia by oxcarbazepine, car-
bazepine and mexiletine was enhanced in STZ-induced dia-
betic rats [587]. The superoxide dismutase mimetic, M40403
blocked carrageenan-induced inflammation and hyperalge-
sia in a naloxone-insensitive manner [1196]. Low-frequency
electroacupuncture decreases carrageenan-induced hyper-
algesia and enhanced dorsal horn c-fos expression in a
naloxone-insensitive manner [1278], Platycodin D, a triter-
pene saponin, produces analgesia on the tail-flick, forma-
lin and writhing tests following systemic, ventricular and
intrathecal administration in a naltrexone-insensitive manner
[214]. Bovine adrenal medulla 22 peptide produces analge-
sia on both pahases of the formalin test following intrathe-
cal administration that is partially blocked by naloxone, but
produces analgesia on the taii-withdrawal test that is insensi-
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tive to naloxone, indicating mixed opioid-nonopioid activity
[488].

4, Stress and social status

This section examines the phenomenon of stress-induced
analgesia (Section 4.1), emotional responses in opioid-
mediated behaviors {Section 4.2), and opioid involvement
in stress response regulation (Section 4.3).

4.1, Stress-induced analgesia

One major theme of stress-induced analgesia is to examine
its role vis a vis the opioid system, particularly consider-
ing parametric (Section 4.1.1), molecular (Section 4.1.2) and
sex/age (Section 4.1.3) factors.

4.1.1. Parametric factors

The anti-opiate peptide family, Tyr-MIF-1 potentiated
immobilization-induced analgesia when administered prior
to stress, but reduced this response when administered after
immobilization. Immobilization reduced the analgesic effects
of Tyr-MIF-1 [121]. Swim stress-induced analgesia was
potentiated by the anorectic drug, mazindol, an effect blocked
by sulpiride and MK-801, but not naloxone [1166].

4.1.2. Molecular factors

Pre-Enk KO mice with a genetic mutation on the DBA/2J,
but not the C57BL/6J background displayed increased lev-
els of opioid-dependent stress-induced analgesia. Moreover,
while C57BL/6J-pre-Enk KO mice displayed elevated anxi-
ety on only the light—dark and startle response tests, DBA/2J-
pre-Enk KO mice showed elevated anxiety on the zero maze
and social interactions tests. [1 10]. Swim stress-induced anal-
gesia in tissve inflamed by CFA was reduced by blockade of
L- and P-selectins or by monoclonal antibodies raised against
alpha(4) and beta(2) integrins, but not by blockade of platelet-
endothelial cell adhesion molecule-1. This effect coincided
with a 40% decrease in migration of opioid-containing leuco-
cytes tothe inflamed tissue [711]. CWS and intraplantar injec-
tion of CRF and opioid peptides produced similar analgesic
profiles in rats injected with CFA and macrophage inflam-
matory protein-2. This early inflammatory response did not
alter MOR or DOR nerve fibers or MOR binding sites in
the DRG [136]. Granulocyte colony-stimulating factor mobi-
lized opioid-containing polymorphonuclear cells, but had a
minor influence on cell migration and peripheral analgesia in
response to inflammatory pain induced by CFA [138].

4.1.3. Sex/age differences

Whereas female spontaneously hypertensive, Lewis and
Wistar rats exhibited swim stress-induced analgesia with the
latter group displaying a NMDA receptor-sensitive response,
swim stress-induced analgesia was observed in male Lewis
and Wistar rats, but not spontaneously hypertensive rats
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[1‘165]. Insulin hypoglycemic stress increased analgesia
induced by morphine, buprenorphine and pentazocine and
decreased responses to noxious stimuli in ovariectomized
rats with or without steroid-induced LH surge [1071]. MOR-
expressing cells in the anterior distalis of the pituitary gland
were more numerous in male than female rats except in the
pre-pubertal and old periods; aging decreased the number of
MOR cells from the first postnatal week through 24 months
in both sexes [173]. The insensitivity of females to NMDA
antagonism of cold-water swim and U5S0488H analgesia is
blocked by ovariectomy and reinstated by progesterone treat-
ment [1077].

4.2. Emotional responses in opioid-mediated behaviors

A review [622] analyzes the roles of brain stimulation
reward, morphine-induced oral stercotypy and sensitization
in terms of implications for drug abuse. Monkeys with dys-
function of a single nucleotide polymorphism of the C77G
site of MOR displayed lower basal and ACTH plasma cor-
tisol levels, and increased aggressive threat scores [766].
MOR KO mice with deletions of exons 2 and 3 show less
anxiety on the elevated plus maze and emergence (ests,
reduced responses to novel stimuli, and less depressive activ-
ity in the forced-swim test. These effects were accompanied
by decreased M1 muscarinic mRNA in cortex, C/P, NAC
and hippocampus, and increased SHT-1A levels in cerebral
cortex and hypothalamus of MOR KO mice [1251]. Mice
exposed to predator odor displayed freezing and less time in
the light, effects associated with increased Fos-related anti-
gen in the prelimbic cortex and NAC shell and decreased
Enk-positive neurons in the NAC core. High anxiety in
these mice was associated with increased Enk-positive neu-
rons in the baso-lateral, central and medial amygdala [465].
The increases in BEND by acoustic startle were blunted in
plasminogen-deficient mice, and central administration of
BEND or AMSH increased the acoustic startle reflex in plas-
minogen KO mice [1189]. Morphine lowered the threshold
for lateral hypothalamic brain stimulation reward in aged
and young rats that showed baseline threshold differences
{532]. The kappa agonist, U69593 increased lateral hypotha-
lamic intracranial self-stimulation thresholds in a kappa
antagonist-sensitive manner [1123]. Low and high central
doses of OFQ/N produce respective anxiolytic and angio-
genic nocistatin-sensitive effects on the hole board test. The
anxiolytic effect was accompanied by increased hippocam-
pal SHT turnover and was blocked by the SHTIA antago-
nist, WAY 100635. The angiogenic effect was accompanied
by decreased amydala SHT turnover and was blocked by
the SHT1A agonist, 8-OH-DPAT [560]. Ventricular OFQ/N
increased anxiety-like behaviors and corticosterone levels in
the open field, elevated plus maze and dark-light neophobic
tests [336]. Acoustic startle magnitude was increased in ani-
mals undergoing spontanecus or naloxone-precipitated with-
drawal from acute morphine, effects blocked by clonidine or
chlordiazepoxide [446], and exacerbated by multiple opiate

exposures and withdrawals [447]. High-aggression pigeons
treated with naloxone showed less offensive aggression and
more emotional responses, whereas naloxone-treated low-
aggression pigeons showed greater offensive aggression dur-
ing food competition [326]. Human volunteers that displayed
greater ACTH responses to psychological stress showed a
similar pattern to naloxone administration with personal-
ity characteristics related to high scores of Extraversion
Openness predicting higher ACTH responses [853]. Subjects
with the methionine/methionine genotype polymorphism of
the catechol-O-methyltransferase gene displayed augmented
ACTH responses to naloxone [854].

4.3. Opioid involvement in stress response regulation

Whereas acute and chronic morphine administered in a
familiar environment increases c-fos expression in striato-
nigral and cingulate cortex cells, acute, but not chronic mor-
phine administered in a novel environment increases c-fos
expression in striato-nigral cells, but decreases c-fos expres-
sionin striato-pallidal cells [337]. Delt and hibernation induc-
tion, but not DADL, reduce total polyubiquitin transcript
expression in a caridiac ischemic model [1060]. Immobiliza-
tion stress and learned helplessness increased DYN A and B
levels in the NAC and hippocampus. Learned helplessness
in turn was reduced by NBNI microinjections into the CA
3 region of the hippocampus and the NAC shell, and to a
Iesser degree, in to the hippocampal dentate and NAC core
{1020]. Immobilization stress increased subsequent rapid eye
movement and slow-wave sleep that was blocked by nal-
trexone pretreatment {1163]. Whereas tail-pinch enhanced
BEND release from the arcuate nucleus and the NAC, arcu-
ate nucleus BEND was only enhanced by fox odor, and NAC
BEND was enhanced by systemic alcohol administration
[726]. Naloxone blocked the increases in ACTH and corticos-
terone induced by the opioid agonist, levorphanol, but not by
its dextrorotary enantiomer, dextrophan, a non-competitive
NMDA antagonist {880]. Inescapable, but not escapable tail-
shock stress potentiated morphine-induced dopamine, but
not serotonin efflux in the NAC, but not the VTA with the
potentiations blocked by either naltrexone or 8-OHDPAT
administration into the DRN [118]. Neurotoxic 5,7-DHT
lesions placed in the medial prefrontal cortex completely
blocked the ability of morphine to enhance the release of NAC
DA in uncontrollably-stressed rats {117]. Menk decreased
resistance to oxidative stress earlier in life in male relative
to female mice {70]. Immobilization stress increased hip-
pocampal Enk and DYN mRNA levels with the latter effect
increased further by increased stress duration [201]. Social
stress induced by a visible burrow significantly reduced Enk
mRNA levels in the NAC in both stress-responsive (acute and
chronic) and non-responsive subordinate (chronic) rats {703].
CRF KO mice displayed reductions in pain stress and a higher
molecular weight form of BEND [364]. Bovine lactoferrin
reduced stressful behaviors in a conditioned fear-induced
freezing test and an elevated plus maze; these effects were
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reducéd by naloxone or L-NAME, and potentiated by electric
foot shock [561]. Dogs fearful of gunshots displayed higher
plasma concentrations of BEND, cortisol, progestercne and
VP during the gunshot test than dogs fearless of gunshots
[508]. Morphine administration produces a rapid and tran-
sient increase in Hsp70 and other heat shock genes [28].
Intraoperative increases in ACTH during major abdominal
surgery were prevented by intrathecal, but not intravenous
sufentanil [127].

5. Tolerance and dependence

The most-often studied variables in the functional analysis
of opioid-mediated responses next to analgesic processes are
the underlying neurobiological roles of tolerance and depen-
dence. This has continued unabated through the years, and
continues to be a focus in this review. Developments will
be reviewed for animal models in tolerance (Section 5.1),
and animal models in dependence and withdrawal responses
(Section 5.2).

5.1. Animal models in tolerance

This section will be divided into the following sub-
sections: (i) cellular effects, (ii) organismic effects, (iii} opi-
oid effects and (iv) peptide-transmitter effects on morphine
tolerance, as well as (v) other forms of opioid tolerance.

5.1.1. Cellular effects on morphine tolerance

A review [390] indicates the emerging evidence for up-
regulation, augmented phosphorylation and altered expres-
sion of adenytyl cyclase type II isoforms, underlying the
ability of chronic morphine to shift opioid receptor G-protein
signaling from Gi-alpha inhibitory to G-beta-gamma stim-
ulatory. A review [646] proposes that cellular modulation
of opioid receptor signaling, either through transcriptional
or post-translational control of the receptor, is the basis for
morphine tolerance and dependence. Another review [235]
indicates that suggestions that clinically-relevant mu-opioid
receptor agonists may have different propensities to produce
tolerance and dependence that arise from their differential
recruitment of regulatory mechanisms are premature, have
not been appropriately assessed, and lack a thoroughly estab-
lished regulatory scheme,

Recovery from desensitization of LC neurons was
increased with chronic morphine or M6G treatment. PKC
mhibition also increased LC desensitization in control tis-
sue [266). Chronic morphine sensitized LC NE neurons to
CRF, and was also expressed as hyperresponsivity to phys-
iological swim stress such that NE-mediated hyperactive
responses predominated [1228)]. Morphine analgesia induced
from the vIPAG developed tolerance after 2h of continu-
ous infusions, and this tolerant state resulted in naloxane-
precipitated increases in RVM ON-cell activity and cessation
of RVM OFF-cell activity 3 days thereafter [641]. Mor-

phine dose escalation over five days produced tolerance and
upregulation (18%) of [3H]IDAMGO autoradiography in the
superficial layers of the spinal cord [927]. Chronic morphine
inhibited SNAP-25 phosphorylation and down-regulation of
neuronal SNARE complex formation in the hippocampus
[1232}. The ability of MK-801 1o ameliorate morphine toler-
ance appears to correlate with its ability to block the CSF
release of glutamate and aspartate by repeated morphine
administration [1204]. Deletion of the G-alpha(z) subunit
increased morphine tolerance in mice through pharmaco-
dynamic and not pharmacokinetic mechanisms [648]. AS
probes directed against RGS proteins significantly inhib-
ited chronic morphine-induced up-regulation of adenylyl
cyclase activity and reversed chronic morphine-induced
actions on DAMGOQ-stimulated [358]GTPgammaS binding
[1229]. Whereas acute morphine respectively decreased and
increased phosphorylated ERK and protein kinase B in
the NAC in a naltrexone-sensitive manner, chronic mor-
phine decreased protein kinase B, but not ERK levels in
the same nucleus [798). Morphine tolerance increases PKC-
gamma activity and glial fibrillary acidic protein in the
dorsal horn. Mice with enhanced green flourescent protein
display even greater expression after morphine tolerance,
whereas PKC-gamma KQ mice fail to display astroglial
hypertrophy or proliferation after repeated morphine [816].
Chronic morphine decreased the affinity of glycine for the
NMDA receptor, but not glutamate, homogquinolinic acid
and NMDA. Its alterations of the antagonist. actions of 7-
chloro-kynuernic acid and idenprodil suggest increases in
NR2A NMDA subunit expression or function after chronic
morphine [731]. Chronic morphine resulting in behavioral
sensitization decreased levels of phospho-Thr34 DARPP and
phosphorylation of GluR 1 and NR1 subunits, suggestive that
morphine challenges decrease PKA activity in morphine-
sensitized rats [991]. Chronic morphine pellets increased
Ca(2+)-calmodulin-dependent kinase II mRNA, protein and
phosphorylation in the spinal cord [673] as well as the
CO/NO-cGMP signaling pathway [672]. DAMGO-induced
inhibition of Chinese hamster ovary cells expressing MOR
develops tolerance that is attenuated by cholera toxin. Per-
tussis toxin unmasks DAMGO’s ability to facilitate forskolin
activation of adenylate cyclase. Interestingly, the mu antag-
onist, CTAP produces similar cholera toxin- and pertus-
sis toxin-sensitive effects (1106]. The ability of vasoactive
intestinal polypeptide and the delta agonist, DPDPE to facil-
itate cAMP formation was abolished by chronic morphione
exposure and re-established by in vitro PKC inhibition [688].
An AS, but not a missense, probe directed against post-
synaptic density protein-95 reduced this protein’s binding
to NMDA receptors and prevented the development of mor-
phine tolerance [674]. A single morphine treatment blunted
the ability of morphine 1 week later to elevate the HVA/DA
level in the C/P, but had no effect on the second morphine
treatment to increase the DOPAC/DA ratio in the C/P [884].
Acute and chronic morphine produced respective naloxone-
sensitive decreases and increases in NO synthesis activity in
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rat cervical nucleus neurons [306]. Chronic morphine infu-
sions upregulated caspace 9, NF-kappaB, NF-H, tau, GABA-
A delta sub-unit, FGFFR1, Ggamma?2, synuclein 1, syntaxin
5 and 13, GRKS and c-fos mRNA gene expression in the
NAC shell, down-regulated v\caspace 1, D2 dopamine recep-
tor, GABA-A alphal subunit, GRIA 1/3/4, Galpha2, PSD-95
and CREB gene expression in the NAC shell, upregulated
NAIP, GABA-A alphal subunit, GRIN2C, GRIAI, mGuR1,
D4 dopmine receptor and PSD-95 gene expression in the
NAC core, and down-regulated bax, bel-x, cox-1 and MAP2
gene expression in the NAC core [469]. Chronic morphine
produced up-regulation of such cytoskeletal genes as glial
fibrillary acidic protein and activity-regulated cytoskeleton-
associated protein, and down-regulation of growth-associated
protein, calthrin heavy chain, alpha-tubulin, Tau and stathmin
[725].

5.1.2. Organismic effects on morphine tolerance

Following continuous morphine, weekly challenges with
morphine produced greater and more sensitized biting
responses in aged relative to younger rats [609}. Whereas
acute stress enables long-term depression induced by hip-
pocampal low-frequency stimulation, acute morphine causes
synaptic potentiation that is reversed to long-term depression
by combined stress-morphine exposure in a glucocorticoid
and NMDA receptor antagonist-sensitive fashion. Chronic
morphine attenvates each of these acute morphine responses
[1239]. The magnitude of tolerance was found to be greater
in female rats relative to male rats following intrathecal mor-
phine adminjstration [489]. Moreover, in a short (6 h) mor-
phine tolerance paradigm, tolerance was observed in male
and proestrus female rats, but not in ovariectomized, estrus,
metestrus or diestrus females [1014]. However, although
male rats display greater analgesia than female rats follow-
ing acute systemic morphine, males and females developed
similar rates of acquistion for systemic morphine tolerance
[480]. Neuropathic animals with sciatic nerve ligations were
more sensitive to the ability of U50488H to produce greater
analgesic and anti-allodynic effects than morphine; repeated
administration of morphine or U50488H failed to produce
tolerance to either response [1063].

5.1.3. Opioid effects on morphine tolerance
Morphine-tolerant rats display analgesic cross-tolerance
to intrathecal DAMGO without changing the magnitude of
DAMGOQ-induced internalization of MOR in lamina II of the
dorsal horn [§130). Both endomorphin-1 and -2 produced
analgesic tolerance following repeated injections that were in
turn cross-tolerant with each other and with morphine [1054].
Chronic intrathecal treatment with [Dmtl]-DALDA more
potently shifted the ADS0 dose of morphine and DAMGO
than the agonists themselves, yet was ineffective in shifting
DAMGO ADS50 doses following ventricular [Dmt1]-DAL DA
administration [86). Morphine-tolerant rats displayed anal-
gesic activity following administration of the metabolically-
stable analogue [N-Met-Tyr1]-DYN A(1-13) on the tail-flick

test [18]. Morphine tolerance and dependence are markedly
attenuated in mice lacking the ORL-1 receptor gene or the
NMDA receptor epsilon-1 subunit, and chronic morphine
increases spinal and supraspinal ORL-1 gene or epsilon-1
subunit protein expression. Rescue of the epsilon-1 sub-unit
gene in specific nuclei of KO mice reinstated morphine tol-
erance and dependence [1141]. An electroporation technique
that delivers the receptor into the brain of KO mice revealed
that the ORL-1 KO mouse deficits in morphine tolerance
acted through the GluR-epsilon-1 or NR2A NMDA receptors
f[1142}. The decreases in neurofilament-L. protein immun-
odensity in the cerebral cortex following chronic morphine
in wild-type mice was abolished in MOR, KOR and POR
KO mice, whereas the marked increases in phosphorylated
neurofilament-H protein density in wild-type mice following
chronic morphine were abolished in MOR KO mice {374].

5.1.4. Peptide-transmitter effects on morphine tolerance
Chronic morphine dose-dependently increased NO pro-
duction that coincided with tolerance development. The
ability of L-arginine to initially enhance morphine-induced
analgesia dissipated rapidly due to a NO-associated loss of
antinociception [467]. Mice deficient in neuronal NOS, but
not in endothelial NOS displayed less morphine antinoci-
ceptive tolerance than wild type mice; prolonged L-arginine
administration mimicked morphine tolerance in wild-type
and endothelial NOS KO mice (468]. G-protein receptor
kinase KO mice display normal analgesic responses to mor-
phine and fentanyl, but these animals fail to exhibit analgesic
or electrophysiological tolerance to fentanyl. Morphine toler-
ance to the analgesic response is unaffected while morphine
tolerance to electrophysiological responses is slowed in these
KO mice [1117]. Both PKC and PKA inhibitors reverse
morphine tolerance in both analgesic and hyperthermic
assays [526]. Co-treatment of the cyclin-dependent kinase
5 inhibitor, roscovitine with morphine inhibited morphine-
induced analgesic tolerance by shifting morphine's analgesic
dose-tesponse curve to the left [1184]). Chronic cotreatment
of gabapentin with morphine blocked the latter’s analgesic
tolerance on the tail-flick and paw pressure tests by pos-
sibly reducing the ED(50) for morphine analgesia [443].
Dipyrone potentiates morphine-induced analgesia in both
dipyrone-treated as well as morphine-tolerant rats [472].
Whereas chronic administration of the glycine(B) site antag-
enist, 1.-701.324 decreased morphine analgesia and increased
the development of morphine tolerance, the NMDA antago-
nist, MK-801 potentiated morphine analgesia and reduced
morphine tolerance [623]. Whereas combined treatment
with mGlu(1) (CPCCOEt) and mGlu(5) (MPEP) antago-
nists blocked morphine tolerance, single treatments produced
partial effects [1039]. The injectable form of aspirin, lysine-
acetylsalicylate, produced naloxone-reversible analgesia fol-
lowing acute systemic and PAG administration, and tolerance
following repeated systemic and PAG administration that
was cross-tolerant with repeated systemic and PAG mor-
phine [885]. Continuous infusion of the SHT1A agonist,
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F13640 with morphine enhanced the latter’s analgesic effect
after 1 week in a rat model of trigeminal neuropathic pain
(2841, Lipoxygenase inhibitors prevent the development of
chronic morphine-induced analgesic tolerance, whereas a
leukotriene agonist augments formalin-induced pain (1131].
Intrathecal morphine analgesic tolerance was blocked by co-
treatment with either an interleukin-1beta antagonist or an
antibody against the fractalkine receptor. These co-treatments
enhanced the ability of acute morphine to produce analgesia
and reverse the development of hyperalgesia and allody-
nia induced by chronic intrathecal morphine [542]. Whereas
chronic bupropion treatment delayed the development of
morphine tolerance and blocked naloxone-precipitated mor-
phine withdrawal, acute bupropion reduced morphine depen-
dence, but not tolerance [547].

5.1.5. Other forms of opioid tolerance

Whereas chronic naltrexone infusions upregulated MOR
density, and down-regulated the trafficking protein, dynamin-
2, chronic etorphine infusions decreased immunoreactive
MOR and increased dynamin-2 [1246). Analgesic tolerance
to the kappa agonist, US0488H was reduced in GIRK-3 KO
mice, and U50488H produced increases in the labeling inten-
sity of a KOR-P antibody that relates phosphorylation of
serine 369 within KOR by GIRK-3 [748]. Tolerance to acetic
acid-induced writhing as well as sedation was noted follow-
ing the kappa agonists, U50488H, TRK-820 and I1C1199441.
Repeated treatment with U50488H, but not TRK-820 pro-
duced decreases in KOR number [1100]. Development of the
hydromorphone- derived 4-chlorophenylpyridomorphinan-
7h, produced mu agonist-delta antagonist in vivo and in vitro
activity, and produced analgesia with no observable tolerance
[32]. The NSAID, dipyrone which produces tolerance and
cross-tolerance with morphine in the PAG has its analgesic
effect blocked by CCK. The CCK antagonist, proglumide
in the PAG prevented the development of dipyrone-induced
tolerance and cross-tolerance with morphine as well as-rein-

stating both morphine and dipyrone-induced analgesia in the .

PAG [1127].

5.2. Animal models in dependence and withdrawal
responses

This section will be divided into the following sub-
sections: (i) cellular effects, (ii) organismic effects (iii) opi-
oid effects and (iv) peptide-transmitter effects on morphine
dependence and withdrawal as well as (v) other forms of
opioid dependence and withdrawal.

5.2.1. Cellular effects on morphine dependence and
withdrawal responses ‘

A review [147] demonstrates that hypothalamic oxytocin
neurons robustly develop morphine tolerance and serve
as a model to study the cellular mechanisms underlying
morphine dependence and withdrawal excitation. Sponta-
neous morphine withdrawal mediates a persistent repression

of genes involved in neural outgrowth and re-wiring
[1069]. Morphine’s ability to enhance guanosine 5'-0-
(3-[(35)STthio)triphosphate binding and adenylyl cyclase
activity causes persistent changes in naloxone’s and naltrex-
one’s effects upon these responses such that these antagonists
suppress these responses in morphine-treated and not naive
animals. The time course of inverse opiate antagonist
effects was similar to the degree of antagonist-precipitated
withdrawal actions [1185]. The increase in ERK in glial, but
not neuropal cell lines by acute morphine was not observed
following naloxone-precipitated morphine withdrawal {795).
‘Whereas chronic morphine decreased brain concentrations
of pregnenolone, progesterone and pregnenolone sulfate,
but not allopregnanolone, dihydroepiandrosterone and
dihydroepiandosterone, naloxone-precipitated morphine
withdrawal increased all of these steroid concentrations
[1234]. Naloxone-precipitated morphine withdrawal
increases ¢-fos in CRF-positive PVN neurons as well as in
CRF-negative neurons in the central amygdala and BNST
[439]. Naloxone-precipitated morphine withdrawal increases
the number and degranulation of mast cells in the mouse tha-
lamus [1108]. Naloxone-precipitated morphine withdrawal
increased MOR density in male and female mouse striatum
and male mouse cortex with the B{max) increased in male
relative to female withdrawn mice, The GABA-B agonist
re-established MOR by significantly decreasing B{max) in
both sexes [285). Local overexpression of the glial glutamate
transporter, GLT-1 within the bilateral LC by recombinant
adenoviruses before morphine treatment inhibited subse-
quent naloxone-precipitated morphine withdrawal [858).
Naloxone-precipitated morphine withdrawal increased NAC
glutamate and aspartate for up to 48 h after the last opiate
administration; NAC glutamate and aspartate increases
persisted up to 96h in morphine withdrawn rats [1009].
Naloxone-precipitated morphine withdrawal increases c-fos
expression in cortex and thalamus, effects prevented by
pairing morphine and the NMDA antagonist, dizocilpine,
but not by dizocilpine alone. Naioxone-precipitated
withdrawl-induced increases in c-fos expression in the
central and medial amygdaloid nuclei, but not the NAC shell
occurred 24 h following a single morphine exposure [536].
Naloxone-induced increases in cAMP in morphine-treated
rat brain slices were reduced by adding morphine or the
endogenous amine, agmatine. TH-induction by morphine
in the LC was also reduced by agmatine [45). This paired
effect also prevented withdrawal-induced phosphorylation
of Ca2+/calmodulin kinase Il in the cortex, but not thalamus
[438). Transcranial magnetic stimulation increased DA con-
centrations in the NAC shell more in morphine-sensitized
rats during abstinence than in control animals [317]. In
addition to transient transcriptional activation of the Fos, Jun
and Krox families, microarray studies identified transcrip-
tional repressors as the cAMP response element modulator,
IkappaB, silencer factor B, helix-loop-helix proteins or
the glucocorticoid-induced leucine zipper in withdrawal in
opicid-dependent animals [29]. Increased phosphorylated
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CREB levels were observed in Neuro2a MOR neuroblastoma
cells following acute and withdrawal-administered opioids
with PKC responsible for transcription following acute
administration and cAMP triggering the mechanisms during
withdrawal [108]. Morphine dependence up-regulates Fas
receptor aggregates and receptor homodimerization in rat
brain [373]. Butorphanol dependence is associated with
increased densities of p-Tyr protein spots in the rat frontal
cortex [600].

5.2.2. Organismic effects on morphine dependence and
withdrawal responses

A discrete population of GABA-A receptors in the VTA
serves as a potential addiction switching mechanism by
gating reward transmission through either a dopamine-
independent (opiate-naive) or a dopaminergic-dependent
(opiate-dependent or opiate-withdrawn) system [645]. Rats
undergoing naloxone-precipitated morphine withdrawal dis-
played marked deficits in lateral hypothalamic brain stimula-
tion reward thresholds relative to naloxone alene, morphine
alone or vehicle treatment [686). Administration of naloxone
after each morphine treatment increased the potency of nalox-
one to induced morphine-precipitated withdrawal responses
4-8 h, but not 22 h after administration {1001]. Intermittent
morphine withdrawal paired with restraint stress produced
decreased weight gain, food intake and caloric efficiency with
short-term reductions in leptin, insulin and testosterong that
were associated with and over-response of CRF mRNA [495].
Quantitative trait locus analyses of C57BL/6 and 129P3 F2
hybrids revealed that a 28cM-wide region of chromosome
1 accounted for 20% of the overall phenotypic variance for
naloxone-precipitated withdrawal jumping responses, and
that 43% of the variance could be accounted for loci on
chromosomes 5 and 10 [579]. Somatic signs of naloxone-
precipitated morphine withdrawal in water-deprived rats
were markedly reduced by sucrose intake in a concentration-
dependent manner [522]. Morphine-dependent rats display
more marked and potent opioid antagonist-induced sup-
pressions of lateral hypothalamic ICSS behavior than naive
control rats [307]. The most common adverse effects of
naloxone-precipitated withdrawal during heroin overdose
were gastrointestinal disorders, aggressivensess, tachycar-
dia, shivering, sweating and tremor [155]. Cats decerebrated
by a midbrain transection displayed all typical naloxone-
precipitated withdrawal signs, suggesting brainstem
mechanisms of opiate dependence and withdrawal [272].

35.2.3. Opioid effects on morphine dependence and
withdrawal responses

A low dose of morphine elicited behavioral and thermal
withdrawal symptoms in rats made dependent to higher
morphine doses, and drug-onset cue-elicited withdrawal
symptoms are not a sensitized response to the opiate but rather
an associative phenomenon [742]. Both acute and chronic
buprenorphine treatment blocked the behavioral signs of
spontaneous morphine withdrawal in rat pups [1083]. Admin-

istration of chronic very low doses of naltrexone attenuates
naltrexone-precipitated withdrawal in morphine-dependent
rats as well as decreased levels of c-fos, PKA and p-CREB
inthe LC and NTS [720]. Acute opioid physical dependence
can be elicited by acute morphine or hydromorphone
treatment followed 2 or 6 h by naloxone in healthy volunteer
subjects [232], OFQ/N fragments of [-11 and 1-6 attenuate
naloxone-precipitated morphine-induced withdrawal signs
[624].

5.2.4. Peptide-transmitter effects on morphine
dependence and withdrawal responses

A review [806] indicates that mRNA of the glial glata-
mate transporter, GLT-1 is decreased in NAC and C/P of
morphine-dependent rats. Whereas a glutmate transporter
activator suppressed development of both morphine depen-
dence and morphine-induced CPP, a glutamate transporter
inhibitor facilitated naloxone-precipitated withdrawal and
conditioned place aversion [806]. Another review [833] indi-
cates that AS directed against the NMDA NRI receptor
blecks the development, expression and/or maintenance of
opiate physical dependence in adult, but not neonatal animals.
NMDA NR2 KO mice failed to show naloxone-precipitated
abstinence that can be recovered by the rescue of NR2A pro-
tein by electroporation into the NAC.

Naltrexone-precipitated withdrawal and discriminative
stimulus effects in morphine-dependent rhesus monkeys
is attenuated by morphine, cocaine, amphetamine and
imipramine, but not by drugs (ketamine and triazolam) lack-
ing affinity for monoamine transporters [751]. Naloxone-
precipitated morphine withdrawal responses and increased
cAMP levels were reduced by the selective DA D4 receptor
antagonist, L-745,870 administered prior to naloxone [718].
SP (1-7) administration into the VTA prior to naloxone-
precipitated morphine withdrawal -decreased D1 DA bind-
ing in the C/P, NAC, SN and medial GP, decreased D2
DA binding in the VTA, and increased D2 DA binding in
the SN and frontal cortex [1291]. Alpha(2A)-adrenoreceptor
KO mice displayed reductions in naloxone-precipitated
morphine withdrawal with no changes in morphine anal-
gesia or tolerance [859]). Naloxone-precipitated morphine
withdrawal was significantly reduced by chronic treatment
with the putative Enk-ase A inhibitor, HLDF-6 [680].
Although acute and chronic agmatine reduced all naloxone-
precipitated withdrawal signs in morphine-dependent wild-
type mice, it only blocked peripheral, but not central with-
drawal signs in neuronal NOS-KO morphine-dependent mice
[46]. KO mice lacking the GluR-epsilonl NMDA recep-
tor subunit displayed attenuations of naloxone-preceipitated
morphine withdrawal, morphine analgesic tolerance and
morphine-induced CPP [775]. Ionotropic NMDA and DNQX
antagonism in the VTA significantly reduced naloxone-
precipitated morphine withdrawal signs [1187]. Cotreatment
with the dihydropyridine calcium channel blocker, nifedip-
ine blocked spoataneous morphine withdrawal signs and
blocked morphine-induced increases in neural NOS activ-
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ity [1175). The metabotropic Glu2/3 antagonist, LY341495
increased naloxone-precipitated behavioral withdrawal signs
and activation of LC neurons in rats withdrawing from
high (strong), but not low (mild) doses of morphine [921].
The metabotropic GluS receptor antagonist, MTEP inhibited
naloxone-precipitated morphine withdrawal responses with-
out affecting locomotor activity [864]. Naloxone-precipitated
withdrawal was significantly reduced by intraperitoneal, ven-
tricular or intracerebral administration of repeated ketamine
into the NAC, but not amygdala [533]. Morphine-dependent
animals receiving the hallucinogenic indole alkaloid, ibo-
gaine, displayed decreases in local cerebral glucose uti-
lization in the MPOA, nucleus of the diagonal band, NAC
shell, inferior colliculus, LC and cerebellar flocculus [6631.
Alpha-CGRP KO mice display decreases in both morphine
and nicotine withdrawal signs [979]. CREB KO mice dis-
played marked attenuations in the behavioral and LC elec-
trophysiological signs of morphine dependence, and dis-
played increased anxiogenic behaviors in stress paradigms
[1154]. Adenosine 2A receptor KO mice show enhanced
morphine withdrawal responses and increases in mu receptor-
stimulated [35S]GTPgamma$S binding in the NAC, but not
overall changes in either mu or dopamine 2 receptor bind-
ing [60]. Lesions placed in the anterior cingulate gyrus
attenuated behavioral responses induced by morphine depen-
dence, but no changes in morphine analgesia or morphine
tolerance [1092). The neuroactive steroid, dehydroepiandros-
terone prevented the development of both morphine depen-
dence and tolerance through c-fos expression linked to ERK
[934]. Magnesium cotreatment with morphine decreased the
subsequent physical signs of naloxone-precipitated morphine
withdrawal [822].

5.2.5. Other forms of opioid dependence and
withdrawal responses

Withdrawal responses from U50488H and cocaine in
Planaria were significantly attenuated by co-treatment with
either D-glucose or 2-deoxy-p-glucose, but not L-glucose
[1144}.

6. Learning and memory

Learning and memory effects of endogenous opioid pep-
tides, their receptors, their agonists and their antagonists, as
well as genetically altered animals continue to be studied
extensively. Recent developments will be reviewed for anima
models in conditioned place preferences (CPP: Section 6.1),
conditioned aversion paradigms (Section 6.2}, drug discrim-
ination and spatial learning (Section 6.3), as well as memory
and amnesia (Section 6.4).

6.1. Opiates and conditioned place preferences

The following scctions examine opioid CPP (Section
6.1.1), non-opioid effects upon opioid CPP (Section 6.1.2),

and opioid effects upon non-opioid CPP (Section 6.1.3)
respectively.

6.1.1. Opioid CPP

Prior morphine infusions followed by 10-30 days of
morphine withdrawal enhanced the development of subse-
quent morphine-induced CPP; the infusions also decreased
amphetamine-induced increases in NAC DA [464]. Brief
electric shock enhanced morphine-induced CPP and motor
activation, while producing a conditioned place aversion by
itself [335]. In contrast, peripheral electrical stimulation at
2 or 100Hz suppressed the expression and reinstatement
of morphine-induced CPP, and increased PEnk (2 Hz) and
PDYN (100 Hz) mRNA levels in the NAC [1016). Morphine-
induced CPP was observed in non-aggressive, but not highly-
aggressive mice, whereas the latter group self-administered
morphine at a higher rate [1164]. Morphine-induced CPP was
more pronounced in rats with a high response to novelty or
an open field relative to low responses for these measures
[1290]. Ventricular endomorphin-1 and endomorphin-2 pro-
duced respective CPP and conditioned place aversions with
the former blocked by mu antagonists and the latter blocked
by mu and kappa antagonists [1220]. Endomorphin-1 and -2
produced respective CPP and conditioned place aversion fol-
lowing posterior NAC shell administration with both effects
blocked by CTOP and the latter effect blocked by DYN
antisera. Whereas endomorphin-1, but not endomorphin-2
produced CPP after VTA treatment, neither agonist altered
place preferences following injection into the SN [1116].
Whereas buprenorphine-induced analgesia is eliminated in
MOR KO mice, buprenorphine-induced CPP is attenuated as
a function of the number of copies of wild-type genes that
were reduced. The remaining buprenorphine-induced CPP is
abolished by naloxone, but only partially blocked by delta
(NTI) or kappa (NBNI) antagonists [511]. The ability of
buprenorphine to produce CPP at high doses is dependent
upon the interval used between drug and vehicle conditioning
[1140]. Two ohmfentanyl stereoisomers, F9202 and F9204,
like morphine, induced CPP and enhanced CREB phospho-
rylation and Ca2+/calmodulin-dependent protein kinase IV
expression in the hippocampus [371). OFQ/N blocked the
acquisition of CPP induced by either morphine or cocaine, but
weakly reduced the conditioned aversion induced by nalox-
one [976]. Compound B, an OFQ/N antagonist, produced a
CPP at doses that increased mesolimbic DA release in wild
type and ORL-1 KO mice [615]. TRK-820, a kappa agonist,
suppressed the rewarding and discriminative stimulus effects
of morphine and cocaine, and attenuated mecamylamine-
precipitated nicotine withdrawal aversion [455]. A review
[800] indicates the ability of OFQ/N to block the acquisition
of CPP to rewarding drugs as well as self-administration of
the same drugs without possessing hedonic properties itself.

6.1.2. Non-opioid effects on opioid CPP
The enhancements in morphine-induced CPP were
blocked by DRN lesions or administration of the SHT-1A
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agbnist, 8-OH-DPAT into the DRN [1210]. A single expo-
sure to cocaine significantly enhanced morphine-induced
CPP and U69593-induced conditioned place aversion with
both effects blocked by NMDA. antagonists placed in the
VTA prior to cocaine [5953]. The cannabinoid agonist,
WIN55,212-2 enhanced morphine-induced CPP, an effect
blecked by the cannibinoid antagonist, SR141716A [722].
Moreover, SR141716 blcoked the expression of morphine-
induced CPP without affecting the locomotor sensitization
induced by repeated morphine [1026]. The NOS inhibitor,
7-nitroindazole, produced conditioned place aversion
by itself and blocked morphine-induced CPP without
affecting activity or morphine-induced hyperactivity [723].
The development and expression of morphine-induced
CPP occurred following VTA administration of NMDA
(APV), AMPA (CNQX) or PKA (Rp-cAMPS) antagonists
[449]. The GABA-A agonist (muscimol) and antagonist
(bicuculline} administered into the basolateral amygdala
respectively decreased and increased the acquisition of a
morphine-induced CPP. Yet bicuculline, but not muscimol
in the basolateral amygdala decreased the expression of a
morphine-induced CPP [1262]. The calmodulin inhibitor,
trifluoperazine suppressed the acquisition and expression of
morphine-induced CPF, an effect unaltered by apomorphine,
but suppressed further by verapamil [1242]. The phosphodi-
esterase Type TV inhibitor rolipram blocked the development
of CPP induced by morphine or cocaine without affecting the
expression of already-established CPP [1119]. The glutamate
transporter  inhibitor, DL-threo-beta-benzyloxyaspartate,
facilitated the expression of morphine-induced CPP and the
somatic signs of naloxone-precipitated morphine withdrawal
without affecting morphine analgesia [1006]. The NMDA
antagonist, memantine blocked morphine-induced CPP
without producing place preferences or aversions by itself
{940]. The mGlu(5) receptor antagonist, MPEP, attenuated
morphine-induced, but not cocaine-induced CPP [473] by
inhibiting up-regulation of the PKCgamma isoform in the
murine limbic forebrain [41). Whereas D3 DA receptor
agonists (7-OH-DPAT, quinelorane, BP837) enhanced the
development of morphine-induced CPP, the D3 DA receptor
antagonist, PNU99194A impaired morphine-induced CPP
while producing a CPP itself [359]. DA D3 receptor KO mice
showed greater sensitivity to development of a morphine-
induced CPP, the D3 partial agonist, BP897, impaired the
expression of an already acquired morphine-induced CPP
in heterozygous, but not homozygeus DA D3 receptor KO
mice [358]. Whereas alpha-1 (phenylephrine) and alpha-2
(clonidine) adrenoreceptor agonists decreased the expression
of morphine CPP, alpha-| (prazosin) and alpha-2 (yohim-
bine) adrenoreceptor antagonists increased the expression of
morphine CPP [971]. Intrathecal administration of the PKC
activator, PDBu abolished morphine-induced CPP without
affecting morphine-induced hyperlecomotion or analgesia;
concomitant administration of the PKC inhibitor, RO-32-
0432 reinstated morphine-induced CPP [§39]. Sciatic nerve
ligation significantly attenuates morphine-induced CPP, an

effect reversed by intrathecal RO-32-0432, a PKC inhibitor
[814]. Sciatic nerve injury inhibited MOR-mediated G-
protein activation onto GABAergic neurons and a reduction
of ERK activity on DA VTA neurons. ERK cascade inhibitors
suppressed morphine-induced CPP in normal mice [815].
Sciatic nerve injury affected both ERK and p38 in the VTA.
However, the ERK inhibitors, PD98059 or U0126, but not
the p38 inhibitor, SB203580 blocked morphine-induced
CPP [857]. Inhibition of calcium/calmodulin-dependent
protein kinase II attenuates morphine-induced CPP, but not
morphine’s analgesic or locomotor actions; morphine CPP
increases this kinase’s levels in the limbic forebrain, but
not the cortex or lower midbrain [813]. Mice lacking either
tissue plasminogen activator or plasminogen itself display
attenuated morphine-induced CPP or hyperlocomotion that
is accompanied by reduced morphine-induced DA release
from the NAC [R03].

6.1.3. Opioid effects on non-opioid CPP

MDMA produced CPP, increases in NAC DA and
decreases in NAC homovanillic acid in both wild-type and
MOR KO mice [944].

6.2. Opiates and conditioned aversion paradigms

Whereas Fisher 344 rat strains display greater morphine-
induced conditioned taste aversions than the Lewis strain,
the Lewis strain showed some greater aversive qualities to
lithium chloride than the Fisher 344 strain [357]. Nalox-
one potently elicited place avoidance behavior 24 h after
morphine administration, an effect attenuated by nicotine
and apomorphine. The nicotine effect was reversed by
mecamylamine, haloperidol, SCH23390, raclopride and
eticlopride, but not hexamethonium, indicating nicotinic
and dopaminergic interactions [44]. Naloxone facilitated
acquisition of fear to contextual and auditory conditioned
stimuli, and also blocked the ability of prior conditioning
to a distinctive context to interfere with fear conditioning to
an auditory stimulus [753]. Conditioned place aversions and
physical signs induced by naloxone-precipitated morphine
withdrawal were blocked by the naturally-occurring central
substance, gamma-hydroxybutyric acid [715]. KO mice lack-
ing the D1 or D2 DA receptor continued to display normal
naloxone-induced conditioned place aversions [810]. Nalox-
one administered into the ventrolateral, but not dorsolateral
PAG dose-dependently impaired development of extinction
of Pavlovian fear conditioning [752]. Although morphine
increased conditioned avoidance responses, its combination
with the neuroleptics, haloperidol, sulpiride and risperidone
impaired acquisition and performance of these responses [9].
Morphine was ineffective in altering the decreased pattern
of responding induced by shock during 10 min punishment
periods [1215]. Patterns of morphine-and cocaine-induced
cFos within conditioned taste aversion-associated, but not
reward-or locomotion-associated brain regions paraileled
the differential behavioral sensitivities of Lewis and F344
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rats to'these drugs within conditioned taste aversion learning

[405].

6.3. Opiates and drug discrimination and spatial
learning

Morphine disrupted the production and discrimination of
interresponse times i pigeons by flattening the distribution
and reducing the accuracy of categorizing their accuracy,
particularly at long intervals without producing overestima-
tion of time [838]. In substitution tests in pigeons capable
of discriminating among saline, morphine and nalbuphine,
naltrexone and CTAP substituted for nalbuphine, fentanyl
and etorphine substituted for morphine, and spiradoline and
US50488H substituted for saline [1182]. In monkeys trained
to discriminate heroin, morphine and M6G substituted in
all cases, but 3-O-methylnaltrexone substituted for heroin in
only half of them. In those positive monkeys, this effect was
naltrexone-reversible and 3-0-methylnaltrexone enhanced
heroin, morphine and M6G discriminative effects. In the
negative monkeys, 3-O-methylnalirexone antagonized the
discriminative effects of heroin, morphine and M6G [899].
Monkeys trained to discriminate the kappa agonist, U69593
generalized to bremazocine to a greater degree than DYN
or its analog, E-2078 with all kappa agonists producing
enhanced prolactin release that was blocked by naloxone and
its quartenary derivative [161]. Monkeys trained to discrimi-
nate to heroin generalized with oxycodone that also acted as
an analgesic, rewarding stimulus and a suppressor of depen-
dence signs [77]. Conditioned stimuli paired with heroin,
cocaine or sucrose elicited lever pressing that was not due to
an over-riding Pavlovian approach response to lever location
with extinction occurring only when the CS-US association
was devalued prior to and not after lever press acquisition
[289]. Rats trained to discriminate tramadol from saline also
displayed substitutions for morphine in a naloxone-sensitive
manner; antidepressant drugs sensitive for serotonin, nore-
pinephrine and/or dopamine reuptake were ineffective [344].
The two kappa agonists, U50488H and TRK-820 produced
discriminative stimulus effects in which the former substi-
tuted for the latter, but the latter failed to substitute for
the former. The kappa agonist, E-2078 substituted for both
U50488H and TRK-820, whereas the kappa agonists, KT-
90, CI-977 and ICI-199441 substituted for U50488H, but
not TRK-820 [790]). Whereas low OFQ/N doses in the dor-
sal hippecampus improved spatial learning, higher doses in
the same site impaired spatial learning with both effects
blocked by ORL-1 receptor antagonism [983]. The ORL-1
agonist, Ro64-6198 produced a slow, but reliable discrim-
jnation in a two-choice food reinforced operant procedure
that was blocked by the ORL-1 antagonist, J-113397, but not
naloxone. Morphine poorly substituted for Ro64-6198, and
kappa and delta agonists were ineffective. Animals trained
for morphine discriminations were sensitive to naloxone,
but not J-113397 antagonism, and Ro64-6198 substituted
poorly in this condition [930). Morphine-induced discrim-

inative effects were respectively reduced and potentiated by
central histamine H2 receptor antagonism and histamine pre-
cursor administration, but unaffected by either central H1 or
peripheral H2 receptor antagonists [789]. The D2/3 antage-
nists, nafadotride and eticlopride attenuated the heroin-like
discriminative effects of nalbuphine, heroin, methadone and
morphine [237]. The D2/3 agonists, quinpirole, 7-OH-DPAT
and quinelorane, attenuated the heroin-like discriminative
stimulus effects of morphine, methadone and nalbuphine,
whereas the first two agonists attenuated the discriminative
effects of heroin itself {238). Hippocampal CA3 microin-
jections of BFNA significantly impaired the acquisition of
spatial learning only for those periods that it blocked mu
receptors without affecting sensory or motor function [755].
Rats exposed to low level microwave radiation exposure took
longer to complete a radial arm maze following naltrexone,
but not naloxone methodide, indicating a central mecha-
nism of action [229]. The halluciragen, salvinorin-A, but
not ketamine, produced generalization to the discriminative
effects of the kappa agonist, U69,593 in rhesus monkeys,
an effect blocked by the opioid antagonist, quadazocine,
but not by the kappa antagonist, GNTI [162]. Rats with
experimentally-induced colitis displayed attentional deficits,
but no changes in locomotor activity, environmental interac-
tions or memory encoding with the attentional deficit ame-
liorated by morphine [765]. Methadone-maintained human
participants trained to discriminate naloxone from placebo
displayed reductions in this task following cotreatment with
either the Ca(2+)-channel blocker, isradipine or the NMDA
antagonist, dextromethorphan [846].

6.4. Opiates and memory

Morphine-induced memory retrieval in a passive avoid-
ance task was enhanced by glucose co-treatment, and
impaired by insulin co-treatment [520]. Morphine’s state-
dependent effects of impairing memory of a passive avoid-
ance task are naloxone-reversible. The K{ATP) blocker
glibenclamide preduced similar effects to morphine in a
scopolamine-reversible manner and glibenclamide potenti-
ated ﬂmrphine’s effects [1263,1264]. Whereas administration
of D1 (SKF38393) or D2 (guinpirole) agonists decreased
the amnesia induced by pre-training morphine on a pas-
sive avoidance task, administration of D1 (SCH23390} or D2
(sulpiride) antagonists increased this amnestic effect [1265].
Previous exposure to morphine decreases the apparent rein-
forcing effect of morphine or remifentanil in a runway proce-
dure, whereas previous exposure to morphine or remifenitanil
increases responding to saline [1181]. Morphine and/or the
CBI1 agonist, anandamide impaired memory consolidation
of a one-trial inhibitory avoidance task immediately, but not
2 h after training, effects blocked by D1 and D2 DA agonists
[245]). Morphine administered during training impaired pas-
sive avoidance during testing unless morphine or ethanol was
administered before the test. These opiate and ethanol effects
were blocked by naloxone, bicucucculine, atropine or meca-
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muylamine [1149]. Repeated morphine or cocaine in a novel
drug-cue environment decreased ICSS thresholds initially in
the presence of the drug, and then in the absence of the drug;
lesions placed in the basolateral complex of the amygdala
abolished the ability of cocaine-associated cues to lower [CSS
thresholds [461]. Spinally-transected rats learn to maintain
a flexion response when they receive legshock in response
to leg extension. Delivery of noncontingent shock disrupts
this form of leamning, and the acquisition and expression of
this deficit is blocked by systemic and central naltrexone and
kappa, but no mu or delta antagonism [548]. Immunodeple-
tion of endogenous morphine decreased entry latency into
the dark chamber during the retention session of a passive
avoidance task [418]. Whereas naltrexone prevented mem-
ory impairment induced by pentylenetetrazol, it failed to alter
the enhancements of retention of an inhibitory avoidance task
induced by the anti-convulsant, gabapentin [115]. Naloxone
improved Morris water maze performance in aged rats and
prolonged the maintenance of LTP of EPSP’s from Schaffer
collaterals to the CAl field of isolated hippocampal slices
[1285]. The impairments in retention of an inhibitory avoid-
ance task induced by acute restraint stress or dexamethasone
were blocked by naloxone treatment [920]. Scopolamine-
induced impairment of spontaneous alternation behavior was
prevented by the kappa agonist, US0488H, an effect in tum
blocked by AS probes directed against exons 2 or 3, but not 1
of the KOR gene [475]. Beta-amyloid-induced impairments
of Y-maze behavior were blocked by pretreatment, but not
post-treatment with U50488H that concurrently decreased
pro-DYN mRNA and the alpha7-type nicotinic acetylcholine
receptor [476]. Abstinent heroin addicts exhibited significant
reduction in P300 amplitude during the anticipatory period
of a short memory task in the central frontal region [866].

7. Eating and drinking

This section will review ingestive effects as functions of
opioid agonists (Section 7.1), opioid antagonists (Section
7.2}, and the interaction of POMC-derived peptides (Section
1.3).

7.1. Opioid agonists and ingestive behavior

A review [122] summarizes a 30-year historical perspec-
tive of the roles of endogenous opioids in feeding behavior.
Another review {848} compares feeding elicited by OFQ/N
with that of other opiate agonists, and suggests that OFQ/N
may not only promote feeding initiation but rather inhibit sig-
naling responsible for inhibition of consummatory behavior
by influencing such inhibitory systems as oxytocin, AMSH
and CRF. Chronic intermittent binging of a sucrose solution
decreases PEnk, protachykinin and D2 mRNA levels more
in the NAC than in the C/P with the former site showing
identified cooperativity among these genes [1065]. Whereas
DAMGO, muscimol or amphetamine administration into the

NAC increased free feeding, they failed to alter acquisition
of lever pressing for food in the manner observed for food
deprivation [442]. DAMGO administered into the central
nucleus of the amygdala produced feeding and mu opioid
receptor internalization into the nucleus as well as selective
c-fos activation of the NAC shell [664). In turn, the ability
of DAMGO administered into the NAC to robustly increase
fat intake was blocked by inactivation of the basolateral or
central nucleus of the amygdala with muscimol [1211]. A bi-
directional mu opioid-opioid connection between the central
nucleus of the amygdala and the NAC shell was established
such that naltrexone pretreatment in one site reduced the abil-
ity of DAMGOQ to elicit feeding from the other site [591].
DAMGO administered into either the NAC shell or the VTA
induced feeding that was significantly reduced when the D1
DA antagonist, SCH23390, but not the D2 DA antagonist,
raclopride was administered into the other site, indicating
regional interactions between opioids and DA in mediating
opioid-induced feeding {708). Both OFQ/N and a selective
ORL-1 agonist, Ro 64-6198, reversed the anorectic effect
of CRF in an ORL-1 antagonist-sensitive manner particu-
larly in the BNST [220]. An injection of intralipid increased
circulating triglyceride, but not glucose, insulin or leptin lev-
els, and was accompanied by increased expression of Enk in
the PVN, perifornical and arcuate hypothalamic nuclei; sim-
ilar increases were observed for galanin and orexin, but not
for NPY or AGRP [193]. Methadone-treated opioid-addicted
patients preferred sweet taste particularly early in the pro-
gram, and mono-and di-saccharides provided far more than
the 10% recommendation for energy {995].

7.2. Opioid antagoenists and ingestive behavior

Faod-restricted MOR KO mice displayed alterations in
food-anticipatory activity as evidenced by equal amounts of
running wheel activity before and after feeding rather than
increased running wheel activity just before feeding time
observed in restricted wild-type mice; these changes were not
accompanied by any changes in arcuate BEND gene expres-
sion [568]. Whereas mu, kappa, but not delta receptor antag-
onists decrease food deprivation-induced feeding in rats,
all three antagonists are effective in reducing deprivation-
induced feeding in mice. AS probes directed against the KOR
and DOR genes significantly reduced deprivation-induced
feeding to the same degree as corresponding antagonists
in mice, but AS probes directed against individual exons
of MOR-1 and its splice variants produced significant, but
modest effects, suggesting a role for multiple mu-mediated
mechanisms [430]. Naltrexone failed to alter the acquisition
or expression of a flavor preference conditioned by fruc-
tose despite producing dose-dependent reductions in fructose
intake during training and iesting [64). Rats highly reac-
tive to a novel environment display greater sensitivity to
naltrexone-induced decreases in sweetened condensed milk
intake and less sensitivity to morphine analgesia than low-
reactivity rats {1205}. Increased saccharin consumption after
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a saccharin deprivation period was inhibited by naltrexone
and the NMDA antagonist, memantine, but not by naloxcone
or acamprosate [1260]. Either naloxone or a NPY antag-
onist augmented and potentiated the feeding suppressive
effects of glucagons-like peptide or xenin-2 with combined
antagonist treatment producing greater effects [1004]. Com-
binations of nalmefene and the cannabinoid CB-1 inverse
agonist, AM251 decreased food intake in both lean and diet-
induced obese mice [204]. Whereas nmuscimol-induced feed-
ing elicited from the NAC shell was significantly reduced
by mu, delta or kappa antagonists, muscimol-induced feed-
ing elicited from the VTA was significantly enhanced by
mu or delta antagonists and reduced by kappa antagonists.
Whereas baclofen-induced feeding elicited from the NAC
shell was significantly reduced by delta or kappa, but not
mu antagonists, baclofen-induced feeding elicited from the
VTA was significantly enhanced by mu or kappa, but not
delia antagonists [580). Feeding elicited by lateral hypotha-
lamic administration of orexin-A was blocked by systemic
and ventricular naltrexone as well as following NAC, but
not lateral hypothalamic pretreatment [1101]. Exposure to
90 dB of white noise elevated the response function for food
intake under a cyclic-ratio schedule of reinforcement in a
naloxone-sensitive manner [841]. A patient with respiratory
failure became intolerant to gastric feeding, an effect reversed
by intragastric administration of naloxone [774).

7.3. POMC-derived peptides and ingestion

A review [699] examines transgenic mouse strains with
expression of enhanced green fluorescent protein in POMC
neurons together with KO strains with selective absence of
BEND or all POMC peptides and discusses the hormonal,
metabolic and trangsynaptic signals that converge on the
arucate hypothalamus and NTS to regulate POMC neuron
activity. NPY hyperpolarizes POMC neurons through a Y1
receptor mechanism that is unaffected by the AMSH ana-
logue, MTIL. Ob/ob mice display an increased desensitization
of NPY-induced currents in POMC neurons, whereas mu ago-
nists failed to produce further desensitization [956].

8. Alcohol and drugs of abuse

The interaction between opiates and other drugs of abuse,
particularly alcohol, continues to be a vigorous area of inves-
tigation. This section is organized into a consideration of how
the opioid system works in the general area of drugs of abuse
(Section 8.1), in opiate self-administration (Section 8.2) and
in interactions with ethanol (Section 8.3), THC (Section 8.4),
stimulants such as cocaine and amphetamine (Section 8.5)
and other abused drug classes (Section 8.6).

8.1. Opiates and drugs of abuse: reviews

A review [827] summarizes the 30-years of research spon-
sored by the National Institute of Drug Abuse in charac-

terizing animal models that replicate the key features of
addiction and the brain areas responsible for addiction and
dependence. A review {58] indicates that environmental con-
text and prior drug history interact to modulate the effects
of morphine, cocaine and amphetamine on behavior, gene
expression and structural plasticity. A review [629] sum-
marizes the role of the endogenous opioid peptide/receptor
system in addictive states and their treatment as well as how
the atypical responsivity to stress plays a role in vulnerabil-
ity and relapse to specific addictive diseases. A review [855]
summarizes the ability of opioid antagonists to reduce ethanol
consumption and ethanol-induced DA release, the relation-
ship of opioid activity in predicting ethanol-preferring and
ethanol-nonpreferring rats as well as human alcoholism, and
the ability of opiate antagonists to reduce alcohol consump-
tion in relapsing alcoholics. A review [451] indicates that
although naltrexone is widely covered on public and pri-
vate health plan formularies, its use in alcohol dependence is
rastricted by quantity limits and prior authorization.

8.2. Opiates and self-administration studies

This section examines animal (Section 8.2.1) and human
{Section 8.2.2) studies.

8.2.1. Animal studies

Heroin self-administration in rats produces an immediate
(10 min) and sustained reduction in GABA dialysates and a
delayed (1 h)increase in glutamate dialysates from the ventral
GP [167). Whereas acute heroin produced positive blood oxy-
gen level-dependent signals in the prefrontal, cingulate and
olfactory cortices and negative signals in the C/P, NAC, thala-
mus and hypothalamus, previous heroin self-administration
attenuated the pattern in the prefrontal cortex, NAC and tha-
lamus [1225]. Reinstatement of heroin-seeking behavior in
heroin self-administrating rats was associated with attenuated
blood-oxygen level-dependent responses in the prefrontal
and parietal cortices, the hippocampus and the NAC [705].
Morphine self-administration was respectively increased
and decreased by the NOS synthase inhibitor, L-NAME and
the NO precursor, L-arginine. In turn L-arginine induced
self-administration behavior that was blocked by L-NAME
{972]. Morphine, cocaine, nicotine and THC increased ERK
phosphorylation in NAC, lateral BNST, central amygdala
and deep layers of the prefrontal cortex [1151). Whereas
a low dose of heroin enhanced cue responding for heroin
reinstatement at an early stage of withdrawal, this low dose of
heroin actually suppressed responding induced by contextual
or conditioned cues after one month of withdrawal [1292].
Heroin administration to pregnant mice yielded offspring
with upregulated hippocampal presynaptic Ach activity and
Ach post-synaptic receptors [1162]. Prenatal heroin exposure
in mice decreases hippocampal Ach-mediated behaviors,
reducing PKC isoforms betall and gamma, and decreasing
desensitization to Ach receptor-induced activation, A similar
pattern of effects was observed in chicks receiving heroin in
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the eggs [1237]. Prenatal heroin exposure also disrupts Ach
receptor-induced PKC translocation and activation acting
through PKC-gamma and PKC-betall, but not PKC-alpha
sensitive mechanisms [1240]. Animals exposed neonatally
to lead responded for heroin at sigrificantly lower rates,
and exhibited a decrease in progressive ratio responding
for heroin as adults [945]. Methadone maintenance blocked
heroin-induced and cocaine-induced reinstatement, but not
stress-induced reinstatement of lever pressing following
extinction [661]). Morphine self-administration increased
amygdala gene expression of gamma PKC, upstream binding
factor 2, lysozyme, noggin and heat shock protein 70 [948].
THC pre-exposure increased heroin self-administration
behavior with shorter pauses between reinforcements and
at short schedules of reinforcement. This potentiation did
not extend to increased behavior on leaner progressive
and fixed ratio schedules {1057]. Rats made tolerant to
delta9-THC self-administered morphine to a similar extent
to controls even though such animals were more sensitive to
CB-1 antagonism [396]. The CB1 antagonist, SR1417164A,
suppressed heroin self-administration in opiate-dependent
rats, but not in non-dependent animals [818]. NMDA NR1
receptor subunit-labeled dendrites in the NTS displayed
fewer plasmalemmal gold particles and more intracellnlar
gold particles in rats self-administering morphine than those
self-administering saline [392]). Two gene transcripts that
were down-regulated in the NAC shell after heroin self-
administration are up-regulated in the NAC core independent
of heroin response contingency [519].

8.2.2. Human studies

Naltrexone-treated patients (44%) showed significantly
greater retention in treatment and less relapse over a 6-
month period than placebo-treated patients receiving coun-
seling (16%) [630]. Heroin-dependent patients showed a
34% history of attempted suicide, particularly female and
residential rehabilitation entrants [269). Injectable diamor-
phine was preferred over injectable methadone in young
male British opiate-dependent patients, and were used to
improve family relationships and avoid trouble with the
police {1007]. Decreases in heroin purity correlated with
declines in heroin-related ambulance callouts, increase in
enrollment in methadone programs, reductions in robberies
and burglaries, but little change in increased use of other
illicit drugs in Australia [1045). Emergency room patients
in Maine treated for poisoning or overdoses accounted for
1.7% of all encounters with 0.2% treated with naloxone. Of
the overdose patients, about 8% were treated with naloxome
because of respiratory depression [17]. Heroin overdoses in
young people were associated with high rates of feelings
of hopelessness, depression, anti-social behavior, self-harm
and diagnosed mental illness [159]. Users that smoked or
inhaled heroin were typically younger, better-educated, more
employed, had less criminal charges, and showed fewer signs
of dependence or overdoses than users who injected heroin
f268]. Heroin use in adolescent females was mostly through

the inhalation method, but also subsequent heroin injection
with introduction to injections by a male friend or boyfriend
[308]. Heroin diffusion in New York State appears due to
the purchase of cheaper heroin by irregular users in urban
areas, and the selling of premium-priced heroin to mid-
Hudson users who do not have access to cheaper herein [365].
Methadone and heroin overdose deaths increased similarly
through the 1990s in New York City [154]. A heroin drought
in Australia increased the use of amphetamines and alcohol
during that time period [63]). Heroin was prescribed most
often for treatment of heavily opioid addicted individuals in
Switzerland with doses markedly higher than those used in
the United Kingdom [415]. Concordance between self-report
of drug use and urine test results had an 85% concordance in
India [521]. Although a majority of heroin addicts maintained
their route of drug administration over a 1-year period, those
who switched from injection to “chasing the dragon” showed
improvements in other substance use behaviors [403]. Driver
characteristics testing positive for heroin (32 years, 78%)
were older and arrested more often for drunken-drugged driv-
ing than those testing positive for ecstacy (24 years, 47%)
with common levels of multi-drug use in both groups [457].

. Mention of opioid use and abuse accounted for only 2% of

total drug mentions during the period from 1997 to 2002, but
the mention of fentanyl, morphine and oxcodone increased
by 161-267% during this period [834]. Opioid analgesics,
including oxycodone, fentanyl, hydromorphone and meperi-
dine accounted for almost 10% of all drug abuse in 2002,
up from about 6% in 1997 [388]. Patient characteristics for
development of dependence on hydrocodone and oxycodone
are described [7673. The vitreous humor appeared to be a bet-
ter predictor than femoral blood and cerebrospinal fluid for
the detection of 6-monoacetylmorphine in deceased individ-
nals {1224]. Codeine intoxication in a patient appeared to be
due to ultrarapid CYP2D6 metabolism which bioactivates
codeine into morphine [378]. Slow-release oral morphine
transition from methadone was associated with improved
social functioning, weight loss, fewer side effects and less
craving, and an enhanced feeling of normalcy [773]. The anti-
epileptic agent, gabapentin reduced reliance on symptomatic
medication and an overall beneficial effect of heroin with-
drawal [734). Opiate-dependent patients receiving naltrexone
implants displayed marked individual and intra-individual
variations in naltrexone concentrations [847]. Thirty percent
of a naltrexone-treated group was retained in treatment in
an Australian naltrexone maintenance program for heroin
dependence [1137]; the presence or absence of counseling
did not change the rate [1136]. Low-dose naltrexone treat-
ment produced no discernible advantage in treatment of
heroin dependence, and patients preferred a SOmg relative
to 0.05-0.5 mg doses [929]. Buprenorphine maintainance is
as effective as methadone maintainance in retaining patients
in substance abuse treatment, and sublingual buprenorphine
is more effective than clonidine and/or naltrexone in short-
term opioid detoxification [1082]. Sublingual buprenorphine
reduced urine morphine levels in opiate-dependent individu-
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" als [78:4], and depot buprenorphine provided effective relief
from optoid withdrawal with no need for additional medi-
cation [1052]. A combination of buprenorphine and nalox-
one (Suboxone) was as effective as buprenorphine itself
in promoting abstirence from heroin [83]. Buprenorphine-
naloxene combinations in opioid-dependent volunteers was
effective in relapse without affecting psychomotor speed,
time perception, conceptual flexibility, focused attention
and memory tasks [770]. The LEEDS project will com-
pare the open use of buprenorphine with dihydrocodeine
for illicit opiate detoxification in UK primary care facili-
ties [845]. Buprenorphine is more bioavailable in the solu-
tion relative to the tablet form [1086]. Unlike morphine and
lorazepam, propoxyphene failed to elicit reliable subjective
effects in non-drug taking volunteers, and did not impair
psychomotor or cognitive performance [1257]. Rapid opiate
detoxification with naltrexone produces gabapentin-reversed
post-inhibitory somatosensory evoked potentials, increases
in nociceptive afferent volleys, and decreased nociceptive
thresholds associated with back pair, limb thrashing and a
restless-leg syndrome [361]. Rapid opiate detoxification with
naltrexone also produces a higher than expected incidence of
delirium [394]. Serious adverse events appear to occur more
frequently and with shorter latency in heroin and methadone
users who leave treatment with naltrexone than those who
leave treatment with opiate agonists [292]. Blood naltrexone
and 6-beta-naltrexol levels can be maintained above thera-
peutic levels following sequential 3.4 g naltrexone implants
inrecovering heroin addicts [504]; this was superiortoa 1.7 g
naltrexone implant [505]. Electroencephalographic spectral
power analyses recorded frequency shifts in the alpha2 range
in frontal and central areas related to duration of daily heroin
consumption and slowing of alphal frequency related to
heroin doses consumed [901]. Subjects who died of an opi-
ate overdose displayed down-regulation of brain mu-opioid
receptors but also GRK 2/6 and beta-arrestin-2 proteins [341].
The prefrontal cortex of human heroin addicts also displayed
pronounced down-regulation of the MAPK cascade includ-
ing MEK and ERK1/2 phosphorylation [340]. Oxycontin in
combination with other centrally-acting drugs is more toxic
than oxycontin alene as measured by lower oxycontin blood
levels in drug-induced fatalities [234]. Substance abuse usage
among Iranian nursing students showed increased prevalence
of opium and tobacco use in males than in females with plea-
sure, habit and need as the major reasons [11]. Young heroin
users before a fatal overdose accessed medical services six
times more frequently than the general population and over
half of the prescribed drugs were prone to misuse [736]. A
combination of buprenorphine and naloxone was success-
ful in detoxification of 68% of intravenous heroin users by
community treatment providers in the NIDA Clinical Tri-
als Network field experience [26]. Morphine and cocaine are
more concentrated in toenails than in hair in autopsies of
drug abusers {224]. The mu receptor mRNA levels of three
drug-induced fatalities were 10,000% higher than measured
housekeeping gene levels in the thalamus [79]. The use of

buprenorphine for heroin detoxification appears equally cost-
effective in clinic and shared care facilities [299]. Critically-
ill children maintained on opiate medications over four days
display significant withdrawal symptoms even with the use
of a standardized assessment tool and a tapering management
protocol [360].

8.3. Opiates and ethanol

This section examines animal studies (Section 8.3.1),
ethanol-induced changes in opioid systems (Section 8.3.2)
and human (Section 8.3.3) studies.

8.3.1. Animal behavioral models

Deprivation initially increased ethanol intake in high
ethanol-preferring rats, an effect respectively enhanced and
reduced by morphine or naltrexone pretreatment [793].
Although naltrexone reduced ethanol intake in both Alko
alcohol-accepting and alcohol-preferring rat lines, it reduced
ethanol’s palatability on the taste reactivity test in the former,
but not latter strain [240]. Nalmefene microinjections into
the NAC and to a lesser degree the VTA potently and
selectively reduced operant responding for alcohol relative
to saccharin; the same injections in the hippocampus non-
selectively reduced both reinforcers [549]. Alcohol intake in
alcohol-preferring rats was potentiated by morphine and the
CB-1 agonist, WINS55,212-2 with the latter effects blocked
by the GABA-B antagonist, baclofen [230]. Mice lacking
expression of BEND, Enk or both peptides learned to self-
administer ethanol and maintain responding for ethanol sim-
ilar to wild-type mice, indicating that endogenous MOR ago-
nists are not necessary to shape or perpetuate ethanol-induced
responding [462]. The catalase inhibitor, AT enhanced the
corticosterone-induced increases by ethanof, but not by
morphine or cocaine [870]. The social memory deficit
caused by ethanol consumption in ethanol-preferring and
non-preferring rats was unaffected by naltrexone, although
naltrexone facilitated social memory in non-ethanol-treated
animals [844]. Whereas acute naltrexone dose-dependently
reduced ethanol-induced locomotion in mice, repeated nal-
trexone treatment transiently increased ethanol-induced loco-
motion [981]. Naloxone and the CB-1 antagonist, SR141716
had greater effects both alone and in combination in reducing
the break points for responding of rats for beer than for near-
beer [369]. Naltrexone decreased intravenous ethanol self-
administration, whereas contingent or noncontingent ethanot
attenuated naltrexone-induced increases in plasma ACTH
{1213]. Naltrexone in the presence and absence of acam-
prosate significantly reduced alcohol intake in a murine lim-
ited access paradigm [598]. Both acute and chronic ethanol
administration increased NAC DA, but not Ach; naloxone-
precipitated withdrawal decreased NAC DA and increased
NAC Ach [912). Single and combined treatment with
naltrexone and the SHT-3 receptor antagonist, IC5205-930
potently suppressed ethanol intake [761]. Naltrexone and the
GABA-B receptor antagonist, baclofen suppressed ethanol
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i.ntake to a greater degree than either drug alone [1088]. Both
naltrexone and a mixed benzodiazepine agonist-antagonist,
betaCCt reduced ethanol-induced behavior following injec-
tion into the central nuclens of the amygdala, but not the C/P
[355]. Naltrexone modestly reduced a CPP for the cocaine
metabolite, cocaethylene, without affecting its locomotor
effects. Naltrexone failed to alter either CPP or locomotor
activity induced by co-administration of cocaine and ethanol
[968). Reinstatement of ethanol-seeking behavior by both
cue-induced and ethanol priming was inhibited by naltrexone
and by antagonism of NMDA-glycine and AMPA-kainate
receptors [57]. OFQ/N reduced alcohol self-administration,
but not sucrose self-administration, and inhibited the
reinstatement of extinguished ethanol responding under
positive odor-light pairing conditions in alcohol-preferting
rats [221]. Rat pups (Days 12-16) exposed to intoxicated
siblings increased ethanol intake; expression, but not acqui-
sition of this effect was blocked by general, mu and delta
antagonism [435].

8.3.2. Ethanol-induced changes in opioid systems

Acute ethanol initially decreased [3H]DPDPE binding in
the posterior C/P after 30 min, followed by increased binding
in the SN, pars reticulata after 1 h, and increased binding in
the frontal and prefrontal cortics, the core and shell of the
NAC, and the anterior-medial and medial-posterior regions
of the C/P after 2 h [757]. Ethanol consumption over 2 weeks
abolished the circadian thythm of POMC mRNA expression
in BEND-containing arcuate neurons by altering rat period-1
and -2 mRNA in the arcuate nucteus [199]. Chronic ethanol
also suppresses BEND-induced natural killer cytolitic activ-
ity as well as granzyme B and interferon-gamma actions
[297]. Chronic alcohol consumption blocked the stimulatory
effects upon [355]-GTPgammaS binding by DAMGO and
DPDPE in the hippocampal dentate gyrus, CAl field and infe-
rior colticulus [978]. Long-term {56 days) of ethanol inges-
tion decreased serum endomorphin-1, but not Menk levels,
whereas AS probes directed against Menk decreased Menk
levels in ethanol-treated rats yet increased endomorphin-1
levels {71]. In alcoholic subjects, increased craving corre-
lated with lower mu-opioid receptor binding potentials in the
right doro-lateral preforntal cortex, the right anterior frontal
cortex and the right parietal cortex [89].

8.3.3. Human studies

Individuals with the G allele of the A118G polymorphism
of MOR reported higher subjective feelings of intoxication,
stimulation, sedation and happiness to alcohol consump-
tion than participants with the A allele, and also reported
a higher incidence of family history of alcoholism [923].
Koreans having one or two copies of the A118G allele
of the mu opioid receptor gene may possess an impor-
tant genetic factor in the etiology of alcohol dependence
and frequency of alcohol consumption [599]. However, Tai-
wanese Han alcoholic-dependent subjects failed to show any
differences in 20 single nucleotide polymorphisms across

the MOR, DOR and KOR genes relative to controls [693].
Combined treatment with acamprosate and naltrexone pro-
duced less alcohol relapse in clinical than pre-clinical studies
with diarthoea and nausea the most common side effects
[585]; patients with acamprosate alone also showed improve-
ment in the alcohol-related problems questionnaire [603].
Alcoholic subjects displayed similar drinking patterns when
given immediate access to alcohol following naltrexone and
placebo. In contrast, naltrexone-treated subjects consumed
fewer drinks and had a slower progression of drinking when
access to alcohol was delayed [38]. Naltrexone was of par-
ticular benefit to alcoholic entry drinker patients who began
to drink during two weeks before commencement of medi-
cation [588]. Disulfiram was superior to naltrexone in pre-
venting relapse among alcohol-dependent men with fam-
ily support [276]. Cognitive behavior therapy was effective
in improving self-reported health status and well-being in
alcohol-dependent subjects with or without the adjunctive
use of naltrexone [333]. Heavy drinking was associated with
higher levels of positive or negative mood states with nal-
trexone attenuating the positive association between heavy
drinking and both positive and negative mood [627]. Alco-
holic subjects treated with a long-acting naltrexone depot had
significantly fewer drinking days during treatment, greater
abstinence and a longer latency to the first drinking day than
placebo-treated subjects [628]. However, the opiate antago-
nist, nalmefene failed to differ from placebo treatment in the
number of heavy drinking days, craving and concentrations
of gamma-glutamyl-transferase and carbohydrate-deficient
transferrin in alcohol-dependent individuals [39]. Naltrexone
performed more poorly than placebo on craving and con-
sumption measures in profoundly alcoholic subjects [270].
However, both naltrexone and nalmefene reduced craving and
alcohol-induced stimulation in non-treatment seeking alco-
holics and social drinkers [302].

8.4. Opiates and THC

The following sections review animal behavioral (Section
8.4.1) and anatomical, molecular and neurochemical (Section
8.4.2) stdies.

8.4.1. Animal behavioral studies

A review [330] indicates that THC and opioids display
functional crosstalk in the mutual modulation of addicitve
and reward behaviors. THC produced CPP that was blocked
by the CB-1 antagonist, SR141716A or naloxone [139].
THC increases BEND in the VTA, but not the NAC shell.
Morphine and raloxone respectively potentiate and reduced
THC-induced drug discrimination, and VTA, but not NAC
BEND potentiates the discriminative effects of THC [1058].
THC enhances the analgesic potency of opioids through the
mediation of delta and kappa receptors [222]. Wild-type,
but not CB-I KO mice decreased operant lever pressing
following delta(9)-THC and the endocannabinoid analog, O-
1812, effects blocked by the CB-1 antagonist, SR141716A.



2010

Reproduction, representation et diffusion interdites. Loi du 01/07/32.

R.1. Bodnar, G.E. Klein / Peptides 26 (2005) 2629-271} 2661

Both wild-type and CB-1 KO mice displayed decreased lever
pressing to the stable endocannainoid metabolite, methanan-
damide, and morphine and ethanol produced greater lever
pressing decreases in the CB-1 KO relative to the wild-type
mice [75]. The CB-1 antagonist, SR141716A blocked the
expression, but not the induction of the behavioral sensitiza-
tion effects of repeated morphine [1172). The discriminative
stimulus effects of THC were completely substituted with
methanandamide, but not with morphine or phencyclidine
[20]. The discriminative effects of the CB-1 agonist, BAY59-
3074 blocked by the CB-1 antagonist, SR141716A, did not
generalize to morphine [277]. Analgesia elicited by the CB-1
agonist, WIN55212-2 was unaffected by chronic morphine
pellet or injection pretreatment [1245]. Naltrexone pretreat-
ment repeatedly reduced self-administration for THC, but
not for cocaine in monkeys trained on a FR-10 schedule with
a 60s timeout between injections [551]. Rats extinguished
for THC self-administration display reinstatement of this
response when administered the CB1 agonist, WIN55212-
2 or heroin, but not cocaine. These effects were blocked by
either SR141716A or naloxone [1066]. DREAM KO mice
display potentiations in the aversive effects of THC, but fail
to show changes in either cocaine or morphine reward, or
natoxone or LiCl aversion [209]. The discriminative effects
of the CB1 antagonist, SR-14716 in a taste aversion paradigm
were completely substituted by its analogue, AM-251, but not
by morphine or naloxone [524].

8.4.2. Anatomical, molecular and neurochemical studies
Repeated THC exposure in rats increased MOR density
over 1-3 days in the C/P, NAC, amygdala, hippocampus, SN
and VTA [243] that further supports the concept of crosstalk
between cannabinoid and opioid systems [242]. Repeated
exposure to WIN55212-2 during adolescence, but not adult-
hood produced cross-tolerance to morphine, cocaine and
amphetamine even though WINS55212-2 treatment during
adolescence or adulthood reduced midbrain DA responsive-

ness [898].
8.5. Opiates and stimutants

The following sections review animal behavioral (Section
8.5.1), anatomical, molecular and neurochemical (Section
8.5.2) and human (Section 8.5.3) studies.

8.5.1. Animal behavioral studies

The background strain of MOR KO mice interacted with
their effects upon cocaine-induced sensitization. MOR KO
mice maintained on a mixed 12956xC57BL/6] background
failed to display cocaine-induced locomotor activation or
sensitization. In contrast MOR KO mice developed on a
C57BL/6] background displayed aumentation of cocaine-
induced sensitization and locomotor activation, an effect
also observed in F1 hybrid 129S6xC57BL/6] wild type and
KO mice [506]. The effect of heroin priming on reinstate-
ment of cocaine seeking was time-dependent with higher

responding occurring after 1-3 months than after 1 day
[701]. Heroin engendered full or partial substitution for
cocaine in a discrimination task in primates; this effect was
enhanced by the dopamine transport inhibitor, GBR12909,
but unaffected by noradrenergic transport inhibition, alphal-
adrenergic antagonism or SSRI treatment [961]. Chronic
morphine treatment and subsequent immediate withdrawal
failed to alter cocaine self-administration under a continuous
reinforcement schedule, but markedly enhanced cocaine self-
administration under a progressive ratio-5 schedule, includ-
ing increased responding during initial extinction [463].
Bilateral NAC administration of BEND antibodies during the
maintenance phase of cocaine self-administration increased
the number of active and inactive lever responses, reminscent
of behavior during extinction of cocaine self-administration
[958]. Rhesus monkeys choosing between cocaine and food
increased their cocaine responding following the kappa ago-
nist, US0488H, an effect blocked by NBNI [823]. The kappa
agonist, R84760 [1279] and DYN {1280] blocked cocaine-
induced increases in siriatal DA levels, cocaine-induced CPP
and cocaine-induced locomotor activity in a NBNI-sensitive
fashion. Striatal DYN is stimulated by DI receptor activa-
tion and decreased by D3 receptor activation after repeated
exposure to cocaine [1272]. Co-administration of heroin or
ethanol with cocaine diminishes the development and occur-
rence of the retreat behaviors induced by cocaine alone in
a runway task, suggesting that ethanol and opioids alle-
viate some of the negative side effects of cocaine [323].
Cocaine-induced locomotor activity was enhanced in DOR
KO mice and reduced in MOR KO mice with the former
producing smaller cocaine-induced increases in DA lev-
els [197]. Further, MOR KO mice displayed reductions in
cocaine-induced CPP, but enhanced sensitization of cocaine-
induced locomotion [434]. The DA transperter blocker, PTT,
reduced self-administration of cacaine alone and cocaine-
heroin combinations while minimally affecting heroin seif-
administration [1031]. The ORL-1 antagonist, Compound B
enhanced the progressive locomotor sensitization to metham-
phetamine during the early stages of the process [842].
Naltrexone attenuated reinstatement of methamphetamine
drug-seeking behaviors when it was administered prior to
re-exposure to methamphetamine-associated cues, but not
when drug-seeking behaviors were reinstated with metham-
phetamine priming [37].

8.5.2. Anatomical, molecular and neurochemical studies
The NR1 sub-unit of the NMDA receptor that is
expressed in 55% of DYN-positive striato-nigral and in 90%
of Enk-positive striato-pallidal neurons was increased by
amphetamine treatment in the DYN-expressing cells [690].

8.5.3. Human studies

Novel polymorphisms in intron | and the 5'-untranslated
region of MOR were found in patients with metham-
phetamine dependence and psychosis, and that A118G of
MOR shows a significant association with methamphetamine
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abuse [510]. Vesicular Ach transporter activity was increased
in the C/P, but not hippocampus of methamphetamine, but not
in heroin or cocaine users [1022]. Naltrexone reduced sub-
jective arousal, but not other behavioral and physiological
signs induced by amphetamine in healthy volunteers [527].
A daily dose of 50 mg of naltrexone failed to reduce cocaine
or alcohol use or interact with the form of therapy provided
[996). The mild kappa-like agonist, cyclazocine produced
only modest effects upon the physiological, subjective and
behavioral responses to cocaine in cocaine users [306].

8.6. Opiates and other drug abuse classes

Naltrexone inhibits alpha-7 nicotine acetylcholine recep-
tors up-regulated by nicotine in hippocampal cultures [21].
Naloxone dose-dependently blocked an anticipatory food-
seeking conditioned response developed during nicotine ver-
sus saline discrimination [863]. MOR KO mice fail to dis-
play locomotor sensitization induced by either chronic nico-
tine administration or reinstatement of nicotine behaviors
in withdrawn animals [1252]. Naloxone-precipitated nico-
tine withdrawal and its conditioned aversive effects were
blocked by acute THC [67]. Naltrexone decreased cigarette
smoking by increasing sedative effects, increasing negative
affect and decreasing positive affect after smoking [316).
Methadone-maintained tobacco smokers performed more
poorly on a gambling task and had more treatment failures
for heroin relapse than maethadone-maintained non-smokers
{959]. Smokers carrying the mu opioid receptor Asp40 vari-
ant displayed greater abstinence, less mood disturbance and
weight gain following smoking cessation especially when
using transdermat nicotine patches [662]. The kappa agonist,
cyclazocine, but not hydromorphone, decreased spontaneous
smoking 5-8 h after drug administration in residential poly-
drug users [894].

9. Sexual activity and hormones, pregnancy,
development and endoerinology

This section will examine developments in the last year
relating the endogenous opioid system to sexual activity (Sec-
tion 9.1), pregnancy (Section 9.2), development (Section 9.3),
and general endocrinology (Section 9.4).

9.1. Sexual activity and hormones

Mating that included one ejaculation in male rats induced
naloxone-sensitive increases in MOR immunoreactivity and
receptor internalization in the MPOA within 0.5 h and lasted
for 6h to the same degree as DAMGO. Corresponding
mating-induced increases in MPOA Fos expression was not
blocked by naloxone [239]. Genital stimulation of male dogs
produced semen ejaculation, penile erction and pelvic thrust-
ing behavior that was biphasically altered by yohimbine,
dose-dependently decreased by 8-OH-DPAT, but unaffected

by naloxone [1250]). Copulation or exposure to sex-related
environmental cues in male rats increased MOR internal-
ization in the VTA and activated both dopaminergic and
nondopaminergic neurons in the nucleus as well as the core
and shell of the NAC [68]. Penile erections elicited by PVN
administration of VGF(588-617) were reduced by morphine,
muscimol and L-NAME, but not by the MK-801 inhibitor
dizocilpine [1091]. Lordosis induced by estradiol benzoate
priming of ovariectomized rats was inhibitied by MPOA
administration of DPDPE, and reversed by NTI [1025].
An Enk analogue blocked estradiol-induced increases in
hypothalamic Akt protein in a naloxone-reversible manner in
ovariectomized rats. The Enk analogue decreased expression
of the estrogen receptor-alpha and [3H]-estradiol binding in
hypothalamus {1170]. Cocaine-induced increases in penile
erections and ejaculations in paradoxical sleep-deprived rats
were reduced by morphine and reinstated by naloxone [34].
BEND- and LHRH-immunoreactivity appears to be juxta-
posed in the human MPOA and in the infindibulum-median
eminence regions of the diencephalon [303]. BEND levels
were lower in aged relative to control and ovariectomized
female rats, an effect reversed by conjugated equine estro-
gen administration [383]. BEND expression increases in
the corpus lutea and perivascular stroma of the ovaries of
superovulated rats, and prolactin treatment produced greater
immunostaining in the granulosa cells of antral follicles,
corpus luteum and stroma [932]. Porcine basal androstene-
dione, testosterone and estradiol release were reduced by
mu, delta and kappa agonists [562]. The inhibitory effects of
testosterone on corticotrope responses to stress appear to be
linked to decrements in plasma and pituitary corticosteroid-
binding globulin, allowing greater access of corticosterone
to its receptors and thereby enhancing glucocorticoid feeding
regulation of ACTH and/or POMC processing [1171]. Nalox-
one increased LH concentrations and amplitude of LH pulses
in mid-anestrons ewes that is not appreciably affected by
melatonin [772]. Naloxone decreased the enhanced plasma
prolactin levels observed in Klinefelter subjects, but did not
alter the increased levels of follicle stimulating hormone
or estradiol and the decreased testosterone levels noted in
these subjects [1209]. Whereas kappa antagonists selectively
inhibited LH secretion in the ewe MBH, kappa and mu antag-
onists increased LH pulse frequency in the MPOA. MBH
GnRH neurons had close associations by DYN-and BEND-
containing varicosities [401]. Bicuculline, but not naltrex-
one prevented anandamide-induced inhibition on NMDA-
induced LHRH release. Fourth ventricular administration of
the glucoprivic agent, 5-thioglucose inhibited plasma LH lev-
¢ls and colabeling of rostral GnRH neurons for c-fos, effects
blocked by the mu antagonist, CTOP. CTOP also inhibited
the glucoprivation-induced increases in c-fos activity in sep-
tal and MPOA sites [1028]. Anandamide increased GABA,
but not BEND release from medial hypothalamic explants
[338]. Central naloxone in male Japanese quail decreases
appetitive responding during extinction test trials for sex-
ual behavior [478]. The reduction of sexual behavior and
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lowered testosterone concentrations in morphine-dependent
male rats are recovered faster by electroacupuncture treat-
ment during morphine withdrawal [256]. BEND administra-
tion to female rats at 3 weeks of age increased adult lor-
dosis activity, and decreased serotonin and uterine estrogen
receptor affinity [253]. A peptide Y1 NPY agonist inhibited
estrogen + progesterone-induced lordosis in ovariectomized
female rats, an effect blocked by the mu antagonist, CTOP.
Estradiol or NPY internalizes MOR in the MPOA of ovariec-
tomized rats that are blocked by a Y 1R NPY antagonist [769].
Naloxone delayed and dampended the peak of the prolactin
response to suckling, an effect accompanied by increased
tyrosine hydroxylase in the arcuate nucleus [1270].

9.2. Pregnancy

Parturition increased oxytocin levels and decreased BEND
and progesterone levels relative to late pregnancy. Whereas
DAMGO and BEND increased prolactin secretion at the
end of pregnancy, kappa (U50488H) or delta (DPDPE) ago-
nists did not. The mu-1 antagonist, naloxonazine was more
effective than NBNI in increasing mifepristone-induced pro-
lactine release [1051]. Prolactin secretion noted at the end
of pregnancy was increased by DAMGO and BEND that
also increased related DA activity, This effect was poten-
tiated by SHT2 antagonism with ketanserin, prevented by
SR95531, and was unaffected by phaclofen {1050]. The mu
agonist, clocinnamox increased oxytocin and PVN and SON
NE levels, whereas U50488H decreased oxytocin levels in
parturient rats [635]. In investigating anesthetic preparations
for the production of transgenic rats, it was found that an
isofturane-morphine combination increased the incidence of
pregnancy relative to ketamine-xylazine combinations, and
yielded comparable numbers of live bisths [1040]. Women
in fear of labor displayed increased NE, but not ACTH or
BEND levels before and during the cold-pressor test [973].

9.3. Development

Both MOR and DOR mRNA are detected in fetal (E16),
neonatal (P6) and adult rat cerebellum in both the granular
and Purkinje layers [797). MOR KO mouse pups produced
fewer ultrasonic vocalizations following maternal separa-
tion, but normal responses to cold or male mouse odors, and
also fail to display a preference to maternal cues or produce
ultrasonic calls after brief maternal exposure [781]. Whereas
brainstem MOR expression was low in the late fetal and
early postnatal period and increased in the juvenile and aduit,
brainstem DOR expression was high in the fetal and post-
natal period, and decreased thereafter [604]. MOR mRNA
in the brainstem in neonatal guinea pigs was unchanged
by chronic intermittent morphine administered during fetal
development [1044]. Cultured cells from rat brainstem
indicate expression and co-expression of MOR and DOR
with the former showing more intense immunoreactivity
postnatally than in late fetal development {605]. Using

[3H]DAMGO autoradiography, more MOR was detected on
post-natal Days 7 and 14 relative to post-nata] Day 30 {928].
Significantly more neonatal DRG neurons expressed func-
tional MOR than in adults in large neurofilament positive
sensory neurons, but not small nociceptive neurofilament-
negative neurons, Correspondingly, morphine analgesia was
higher in the neonate for mechanical stimulation, but not
thermal stimulation [808]. Prenatal morphine respectively
decreased and increased POMC mRNA in the arcuate
nucleus in males and females, and respectively increased and
decreased PEnk mRNA in the ventromedial hypothalamus.
Ovariectomy and hormone replacement produced further
differential effects in females [1035]. Prenatal morphine
suppressed stress-induced ACTH, but not corticosterone
levels in diestrus and proestrus females, attenuated the ability
of dexamethasone to suppress stress-induced corticosterone
levels [1036]. Morphine and naloxone exposure in neonatal
piglets respectively increased and decreased endothelin-1
production and endothelin A, but not endothelin-B receptor
mRNA expression in vascular endothelial cells [1158].
Although chronic morphine tolerance did not affect endothe-
lin receptor affinity and density in the neonatal rat, it reduced
endothelin’s ability to stimulate [355]GTPgammaS binding,
and induced higher stimulation of G proteins by endothelin-
A, but not endothelin-B antagonists [908]. Spontancous
and precipitated withdrawal from a single dose of morphine
produced mechanical allodynia in 7-day and 21-day old rats,
and produced thermal hyperalgesia in 7-day old rats [1102].
Whereas AMPA receptor antagonists and Group II MGluR
agonists interfere with morphine withdrawal in rat pups at
7, 14 and 21 days of age, NMDA antagonists are ineffective
at 7 days, partially effective at 14 days and fully effective
at 21 days of age [1293). PKC modulates the exaggerated
spinal ventral root response and withdrawal-associated
thermal hyperalgesia produced by morphine administration
in 7-day old rats [1103]. Neonatal BEND increased adult
rat nocistatin levels with females displaying greater CSF
levels of nocistatin in both groups [1115]. Buprenorphine
or methadone during gestation attenuated DAMGO, but not
OFQ/N GTPgammaS binding in mesolimbic areas of the
dam and male pups in a naloxone-sensitive fashion. Chicken
eggs injected with heroin, nicotine or chlorpyrifos yielded
subsequent deficits in imprinting behavior that were associ-
ated with deficits in cholinergic sypaptic signaling involving
the muscarinic receptor-mediated membrane translocation
of PKC-gamma and in the basal levels of PKCgamma
and PKCbetall [516]. Buprenorphine stimulated OFQ/N-
induced GTPgammas binding in the NAC and lateral septum
in males on P2 [494]. Although maternal separation for 4h
daily increases subsequent maternal behavior by the dams,
it failed to change opioid peptide levels in male or female
offspring [728]. Capsaicin treatment to rat pups produced
hyperalgesia, forebrain mu opioid receptor uncoupling, and
increased basal and forskolin-stimulated adenylyl cyclase
activity that proved to be quite impervious to DAMGO
treatment [687]. Although pre-emptive morphine infusions
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did not reduce the frequency of severe intraventricular
hemorrhage, periventricular leucomalacia or death in venti-
lated pre-term neonates, intermittent boluses of open-label
morphine were associated with an increased rate of the
composite outcome [31]. Lenk half-life induced by breast
and formula feeding in infants correlated with temperament,
but not psychomotor development [1055]. In neonatal
abstinence syndrome of infants born to opiate-dependent
mothers, morphine was more effective than phenobarbitone
in shortening pharmacological treatment, requiring second
line treatment or need for the special care baby unit [518].
M3G is the predominant metabolite of morphine in young
(0-3 years) children with total body morphine clearance
80% of that of adult values [133].

9.4. Endocrinology

DAMGO and DPDPE, but not U69593 stimulated N-
acetyltransferase activity and increased melatonin in bovine
pinealocytes through the induction of adenylate cyclase
[218]. In anestrus, ovariectomized estradiol-treated ewes,
the caudal continuation of the arcuate nucleus contained
DYN, tyrosine hydroxylase, estrogen receptor alpha, NOS
and CART, whereas the premamillary nucleus contained
only NOS and CART [1038). The pattern and magnitude
of naloxone-induced changes in endocrine function with
prediction accuracy of 69-85% facilitates identification of
sexually-active and sexually-inactive rams [1075]. Recom-
binant adeno-associated viral vecters encoding the human
leptin-receptor gene decreased hypothalamic BEND, NPY
levels and expression and increased LH levels in fatty Zucker
rats [576}.

10. Mental illness and mood

This section summarizes the few studies examining opi-
oid involvement in mental illness (Section 10.1) and moed
(Section 10.2).

10.1. Mental illness

A review [1015] examines the role of endogenous opioids
in mediating placebo effects upon post-traumatic stress dis-
order, particularly the symptom clusters or re-experiencing
of symptoms, avoidance and numbing, and physiological
arousal, Another review [1 104] indicates that naltrexone suc-
cessfully reduced self-injurious behavior in 80% of people
with mental retardation with males more likely to respond
than females [1104]. The Pro-Enk gene located at 8ql2.1
is one of a few genes that have been identified using a
convergent approach in the etiology of bipolar (manic-
depressive) and related disorders [840]. The allelic+G of
the A118G polymorphism tended to be higher in patients
with obsessive-compulsive disorder and tics than in controls
[1147]. High-dose opioid treatment in a woman with termi-

nal ovarian cancer produced delirium that was ameliorated by
acetylcholinesterase inhibition with phystostigmine and then
donepezil [1037]. Naltrexone augmented neuroleptic treat-
ment in alcohol-abusing patients with schizophrenia [889]
and augmented the GABA agonist, clonazepam in the treat-
ment of tardive dyskinesia in schizophrenic patients [1217].
Naloxone at doses of 100-200 mg per day over four months
decreased sexual fantasies and masturbation in a subset of
adolescent sex offenders [967]. However, naloxone did not
differ from placebo treatment in reducing symptoms during
acute dissociative states in female patients with borderline
personality disorder [892].

10.2. Mood

Morphine produced naloxone-reversible increases in the
discounting of the value of delayed rewards, an animal model
of impulsivity [586]. The delta agonist, BW373U86 at doses
that produce antidepressant activity, increases BDNF mRNA
expression in frontal piriform and olfactory cortices, amyg-
dala and hippocampus in a NT1-sensitive manner [1126]. The
ORL-1 antagonist, UFP-101 demonstrated anti-depressant
properties by reducing immobility on the forced swim test, an
effect blocked by OFQ/N. ORL-1 KO mice displayed far less
immobility than wild-type mice [380). The anti-depressant
actions of venlafaxine on the forced swimming test in mice
were blocked by naloxone, but not BFNA, naloxonazine,
NTI or NBNI, suggesting a nced for overall blockade of the
opioid system for effectiveness [95). Chronic desipramine
and sertraline treatinent both decreased mu-opioid binding in
many brain areas, but only decreased functional coupling to
G proteins in the amygdala [200]. Suicide victims displayed
elevations in the expression of MOR, alpha-2 adrenoreceptors
and both SHT1A and SHT2A receptors relative to matched
controls [321].

11. Seizures and neurologic disorders

This section summarizes the research examining the role
of the endogenous opioid system in the mediation of seizures
(Section 11.1) and neurological disorders (Section 11.2).

11.1. Seizures

A review [1056] summarizes the modulatory role of DYN
in hippocampal slices and its anti-ictal effects in animals
and humans, suggesting the DYN dysregulation is involved
in refractory encephalitic seizures. MOR KO mice display
enhanced kindling development induced by pentylenete-
trazol, an effect further enhanced by NTI treatment [408].
Analgesia produced by post-ictal electroconvulsive shock
seizures was blocked by naloxone as well as V1 and V2 vaso-
pressin antagonists [903]. Hippocampal penicillin-induced
seizures were blocked by ventrciular OFQ/N, an effect
reversed by an ORL-1 antagonist [334]. Prenatal morphine
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expos;lre reversed the increased latency induced by naloxone
to bicuculline-induced seizures. This treatment decreased
PEnk mRNA and Menk in the hippocampal dentate gyrus,
and correspondingly increased PDYN and DYN in hip-
pocampal areas [993). Bicucuiline-induced seizures were
reduced in adult rats receiving cholera toxin, and that were
exposed prenatally to morphine or saline. Chronic saline
injections prior to bicuculline reversed the seizure latency in
morphine-exposed adult males, suggesting interactions with
stress [994]. Diestrus females displayed a higher threshold
for pentylenetetrazole-induced seizures relative to males and
estrus females. Morphine produced anticonvnisant effects at
all doses in males, at lower doses in estrous females, and at
higher doses in diestrus females [938]. Naltrexone, but not
NBNI reversed the anticonvulsive effects of the CB1 agonist,
ACPA, whereas the CB1 antragonist, AM251 blocked the
proconvulsive and anticonvulsant actions of high and low
doses of morphine in pentylenetetrazole-treated mice [1011].
Intestinal inflammation induced by croton oil administration
lowered the threshold of pentylenetetrazole-induced sezures,
an effect blocked by chronic, but not acute naltrexone and
unaffected by NOS manipulations [937]. Kainate-induced
seizures in the hippocampus produced two-fold increases in
OFQ/N for up to 3 h [42]. Kainic acid-induced seizures were
enhanced by intra-hippocampal infusions of the mu opioid
agonist, PL.017 and inhibited by intra-hippocampal infusions
of BFNA [682]. Low frequency stimulation during amygdala
kindling increased mu receptor binding in the ipsilateral baso-
lateral amygdala and thalamus and in the contralateral tempo-
ral cortex, but decreased binding in the ipsilateral frontal cor-
tex {695]. The CCK antagonist, proglumide inhibited the anti-
convulsant effects of morphine, opicid-mediated prolonged,
intermittent footshock and opioid-mediated immobilization
stress, while potentiating the analgesic effects of each manip-
ulation [482]. Ultra-low doses of naltrexone potentiated the
anticonvulsant effects of morphine by lowering the effective
morphine dose, but not be increasing maximal anticonvul-
sant effects of higher morphine doses. As naltrexone doses
increased, they then blocked morphine’s anticonvulsant effect
[484]. Both acute and chronic lithium chloride inhibited
the respective anticonvulsant (1 mg/kg) and proconvulsant
(30mg/kg) actions of morphine in a pentylenetetrazole-
induced clonic seizure model. Lithium’s effect was
potentiated by the NOS inhibitor, L-NAME and reversed by
the NOS substrate, L-arginine [483]. Naltrexone and lithium
respectively worsened and lessened cocaine-induced seizures
[710]. Seizures produced by lithium chloride and pilocarpine
combinations are reduced by exposure to a 10min swim
stress between the two drugs; this effect was reversed by
yohimbine, but not by naloxone or mifepristone [367].

11.2. Neurological disorders
Intrathecal morphine, but not buprenorphine or penta-

zocine induces spasic paraparesis after a noninjurious interval
of spinal cord ischemia [807]. Morphine reduced the dysk-

inesias induced by L-DOPA, D1 agonists and D2 agonists
in MPTP-treated cymologous monkeys without affecting
their anti-Parkinsonian efficacy [980]. Striatal MPTP treat-
ment in primates resulted in increased Enk levels in the
striaturm and external GF, but not the SN [97]. Ibotenate-
induced lesions of intralaminar thalamic nuclei prevented
the increased striatal Menk mRNA levels observed in rats
receiving SN 6-OHDA without affecting striatal SP down-
regulation [56]. Striatal pro-Enk mRNA levels were sig-
nificantly elevated in 6-OHDA lesioned rats by repeated
administration of L-DOPA, but not by the D2/D3 receptor
agonist, ropinrole [923]. High-frequency stimulation of the
sub-thalamic nucleus increased striatal Enk mRNA expres-
sion, an effect blocked by sub-thalamic nucleus excitotoxic
lesions [55]. Haloperidol-induced catalepsy and increases
in striatal enkephalin mRNA are abolished in mice with
nerve growth factor inducible gene B deletions; striatal DYN
mRNA is preserved [322]. Tremors induced by the anti-Ach
esterase, diisopropylfiuorophosphate were increased in MOR
KO mice, and striatal Ach esterase activity was higher in
MOR KO mice [1121]. Increased Ach esterase activity was
noted in C/P and NAC, but not cortex or hippocampus of
MOR KO mice. MOR KO mice displayed lower binding of
nonselective and M2 muscarinic agonists in the C/P and NAC,
but unchanged binding of M1 muscarinic agonists [1122].
DOR sensitive to BEND were found in higher densities in
the fast extensor digitorium longus muscles and slow soleus
muscles of dystrophic mice [324]. Mutant hamsters with dys-
tonic symptoms display higher basal ventro-striatal pro-DYN
and lower Pro-Enk in hippocampus and hypothalamus. Fol-
lowing stress, mutant hamsters with dystonia exhibit lower
Pro-DYN levels in the limbic system and lower Pro-Enk lev-
els in anterior and doral straitum and NAC [832].

However, 11C-diprenorphine binding failed to differ in
patients carrying the DYT1 primary torsion dystonia gene and
controls [1208), Moreover, P-Enk mRNA was not changed
in the striatum or NAC of mice with defective tetrahydro-
biopterin biosynthesis, and an animal model of 1-DOPA-
responsive dystonia [1267]. Male and female Alzheimers
patients show greater estrogen receptor alpha in nuclei than
in cytoplasm in the infindibular nucleus of the hypothala-
mus which produce BEND that inhibits GnRH release [474].
Severely demented Alzheimer’s patients have higher cortisol
levels upon death than less demented Alzheimer’s patients
or controls; morphine treatment does not alter this corti-
sol rise [319]. Dysautonomic patients following traumatic
brain injury are more likely to receive neurologically-active
medications including morphine and midazolam with cessa-
tion resulting in increased heart and respiratory rates [59].
Naloxone failed to reduce levodopa-induced dyskinesia in
Parkinson’s patients [356). Whereas early stages of Hunting-
ton’s disease result in Enk, SP and GAD depletions in the
striatal projection to the external GP, later stages of Hunting-
ton’s disease show profound losses in all striatal projection
systems [283]. Intrathecal administration of the delta agonist,
SNC80 attenuates hindlimb motor dysfunction and neuronal



2010

Reproduction, representation et diffusion interdites. Loi du 01/07/92.

2666 R.J. Bodnar, G.E. Kiein / Peptides 26 (2005) 2629-2711

injury after spinal cord ischemia [491]. Intrathecal morphine
infusions ameliorated spasticity in patients refractory to clin-
ical treatment [949]. Both PKC and PKA activation augment
lactate dehydrogenase in normoxic and hypoxic cortical neu-
rons, whereas PKC, but not PKA inhibition decreased this
activity in both normoxic and hypoxic cortical neurons. DOR
inhibition reduced lactate dehydrogenase in mormoxic cor-
tical neurons, but failed to affect hypoxic neurons [487].
Mu and kappa opioids suppress the hypoxic response of
adrenal chromaffin cells through their action on SK chan-
nels and voltage-dependent Ca(2+) channels [575]. Patients
with strokes display reduced opioid receptor binding using
[11C]-diprenorphine PET-imaging independent of the lesion
site [1214].

12, Electrical-related activity and neurophysiology

The following section will review neurophysiological
effects described over the past year for mu (Section 12.1),
delta and kappa (Section 12.2) as well as ORL-1 (Section
12.3) agonists and their receptors.

12.1. Mu agonists and receptors

A review [195] indicates that opicids can directly excite
individual cells when cpicid receptors interact with other
G-protein coupled receptors, when different subtypes of
opioid receptors interact, or when opioids transactivate
other receptors such as receptor tyrosine kinases. Morphine
inhibited the increase of free intracellular Ca2+ concen-
tration evoked by depolarization of small neurons in adult
dorsal root ganglion, effects blocked by L-, N-and P/Q-type
voltage-dependent Ca2+ channel inhibitors and mu ard
delta, but not kappa antagonists [582]. Morphine-induced
suppression of the Ca2+-dependent release of glutamate by
exposing cerebro-cortical synaptosomes to the K+ channel
blocker, 4-aminopyridine appeared to act through presy-
naptic mechanisms [1238). Morphine-induced inhibitien of
the nocieptive flexor reflex in the rat toe was attributable to
a preferential reduction of A-delta-mediated short-latency
components relative to long-latency C-fiber-mediated com-
ponents [601), The apparent entropy of persistent discharge
of lumbar dorsal horn wide dynamic range neurons following
bee venom injection into the receptive field of a rat correlated
strongly with the ability of morphine to depress the activity
of individual neurons [1288]. Morphine produces rapid
desensitization of LC MOR cells when PKC is also activated
[62]. Dose—response and isobolographic analyses of MOR
and alpha(2A)-adrenergic receptor agonist-induced hyperpo-
larization in individual LC neurons revealed an additive and
not a synergistic interaction for this in vitro response [1085].
Endogenous morphine and codeine, detected in primates by
gas chromatography—mass spectromietry, could be released
by high potassium concentrations depolarizing neurons
through a Ca2+ dependent mechanism [826]. DAMGO

hyperpolarized tonic-firing substantia gelatinosa neurons
through activation of G protein-coupled inward-rectifier
K+ conductance without affecting adapting- or delayed-
firing neurons [986]. DAMGO inhibits voltage-dependent
Ca(2+) channels in rat spinal dorsal horn neurons, an effect
dependent upon PKC-dependent phosphorylation [652].
DAMGO inhibited high voltage-activated calcium currents
in DRG neurons in wild-type and MOR KO mice receiving
virally-expressed MOR. However, desensitization was less
in wild-type mice indicating that a higher density of receptor
resulted in less desensitization [1183]. Moreover, DAMGO’s
inhibitory effects upon DRG neurons were more potent in
isolectin B4-negative cells than in isolectin B4-positive cells,
and acted upon the N-type and P/Q-type Ca2+ currents in
these cells [1223]. DAMGO increased discharge activity in
about half of I.C neurons in a bicuculline-dependent fashion,
and decreased discharge activity in the remainder. DAMGO
decreased the frequency and amplitude of GABA-mediated
miniature IPSCs in LC neurons without affecting glutamate-
mediated miniature EPSCs [865]. Menk and DAMGO,
but not DPDPE decreased the amplitude of raphe pallidus-
evoked EPSCs, increased the amplitude ratio of pairs of these
evoked EPSC’s, while decreasing the frequency, but not the
amplitude of miniature EPSC’s in the hypoglossal motoneu-
rones [132). DAMGO increased the transient I{A) and
sustained I(K) components of the K+ cutrent components as
well as hyperpolarized the membrane potential of trigeminal
root ganglion neurons in a selective (CTOP) mu antagonist-
sensitive manner [1111]. DAMGO reduced the frequency
of bicuculline-sensitive miniature IPSCs in isolated PAG
neurons, and effect reversed by N-ethylmaleimide, but not by
cadmium, depletion of extracellular Ca(2+) or K+ channel
blockade [432]. DAMGO decreased the amplitude of both
EPSC’s and IPSC’s as well as the frequency of both minia-
ture BPSC’s and IPSC’s in spinally-projecting RVM neurons
{348]. Morphine and DAMGO, but not DADL or U69593
inhibited KCl-induced release of [3H]GABA from rat infe-
rior colticulus slices {1125]. DAMGO was more effective
than DPDPE or DYN in decreasing the amplitude of EPSC’s
and IPSC’s as well as the frequency of miniature EPSC's
and IPSC’s in the mouse SON, effects blocked by naloxone
and selective mu antagonism [485]. DAMGO potentiates
spike frequency adaptation in lateral amygdala pyramidal
neurons, effects blocked by G-protein inhibition with
N-ethylmaleimide or by blecking phospholipase A(2) [325].
Mu agonists hyperpolarized a subset of central amygdala
neurons through opening inwardly rectifying K+ channels
that had no spike accommodation, whereas kappa agonists
hyperpolarized central amygdala neurons that displayed a
characteristic accommeodating response [1297]. Morphine
attenuated the long-latency, but not the short-latency com-
ponent of laser-evoked potentials and ensemble neuronal
activity in the tail region of the primary somatosensory cortex
[1133]. Morphine-induced inhibition of medial prefrontal
cortex neurons triggered both nociceptive specific neurons
using their response as a sensory transduction code, and wide
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L
dynamic range neurons using duration more than frequency

in defining stimulus intensity [1274]. Although Menk and
DAMGQO failed to alter the amplitude of evoked IPSC’s in the
dorsal vagus motor nucleus, brief incubation the adenylate
cyclase inhibitor forskolin, TRH or CCK facilitated Menk
or DAMGO-induced inhibition that was blocked by mu-
selective antagonism. NGF selectively attenuated fentanyl-
mediated inhibition of voltage-activated Ba2+ currents in
rats’ sensory neurons through Trk A receptor activation [745].
The partial mu opioid agonist, buprenorphine depressed
the baseline flexor reflex and reduced C-fiber conditioned
stimulus-induced reflex facilitation at lower doses than mor-
phine (626). BFNA enhanced NMDA-evoked release of Ach
in striosome-rich areas but not in the striatal matrix, effects
more pronounced in the afternoon than in the morning.
Alpha-methyl-para-tyrosine administration that interfered
with DA transmission elicited similar NMDA-evoked
release of Ach in the morning and the afternoon, whereas the
BFNA-induced facilitation was suppressed. DAMGO failed
to affect NMDA-evoked release of Ach, but abolished both
DA-dependent and DA-independent responses of BFNA
[5171. Forskolin-induced facilitations were in turn blocked

by adenylate cyclase inhibition of PKA inhibition [150].

Morphine and DAMGO enhance ciliary beating in the marine
mussel M. edulis, effects blocked by naloxone and NOS
inhibitor, L-NAME [166]. Both endomorphin-1 and OFQ/N
inhibited the electrically-evoked outflow of glutamate and
GABA by 50 and 30%, respectively in primary cultures
of rat cortical neurons with the former, but not the latter
also inhibiting electrically-evoked Ca2+ influx [104]. The
ability of CGRP8-37 to inhibit wide dynamic range neurons
in the dorsal horn was attenuated by naloxone, BFNA and
NENI, but not by N'TI [1236]. The ability of CCK to reduce
morphine-induced analgesia elicited from the RVM appears
due to CCK’s ability to selectively activate RVM on-cells and
produce behavioral hyperalgesia [466]. Like morphine, NPY
acts through presynaptic Y2 receptors to attenuate EPSC’s
and through presynaptic Y1 receptors to attenuate glycinergic
and GABAetrgic IPSC’s in the rat substantia gelatinosa [786].

12.2. Delta and kappa agonisis and receptors

Lenk inhibited Ca2+ channel currents in X. oocytes that
were blocked by the nootropic agent, nefiracetam [1254].
DADL decreased the amplitude and the conduction velocity
of the sciatic nerve of Rana ridibunda in a naloxone-
dependent manner [170]. Lesions placed in the frontal
cortex eliminated the ability of the delta agonist, DPDPE
to enhance striatal glutamate and DA in dialysate, and to
reduce [3H]-DPDPE binding by 18% in the striatum [112].
Menk decreased GABA post-synaptic currents in GnRH
neurons in fed, but not fasted mice, whereas opioid receptor
blockade increased this frequency in fasted, but not fed
mice [1093]. Bovine adrenal medulla 22, a cleaved product
of PEnk A decreased heat-induced and formalin-induced
fos-like immunoreactivity in the dorsal hom laminae in a

naloxone-reversible manner [1268]. The nonpeptide delta
agonist, SNC80, but not DPDPE blocked Na+ current ampli-
tude and increased slow inactivation processes in isolated rat
hippocampal neurons, effects unaffected by naloxone or NTI
treatment [933]. Mechanically-induced and spontaneous
discharges following injury to the inferior alveolar or lingual
nerves of the trigeminal complex are reduced by Enk and
increased by SP, CGRP and vasoactive intesinal polypeptide
[943]. The delta antagonists, NTI and naltriben reversibly
inhibited SHT-induced GIRK currents in the DRN that was
unaffected by delta agonist administration [1019].

SON VP cells exhibiting spontaneous phasic activity
had their firing rates elevated by the VP-1 receptor antag-
onist, OPC21268, while the kappa antagonist, NBNI pro-
duced an emerging excitation over the course of each burst
[146]. Inhibition of high-voltage-activated Ca2+ currents
in medium-to-small GP cells occurred following DAMGQG,
DYN and US0488H with the kappa responses blocked by the
PKC inhibitor, cehlerythrine. Reserpine dramatically reduced
kappa, but not mu-sensitive fractions in principal striatal cells
[1064}. Changing the pH of the external solution affects
the ability of DYN to inhibit NMDA receptor-mediated cur-

rents in X. oocytes with decreased pH enhancing inhibtion

and increased pH blocking inhibiton [856). Somatodendritic
DYN release terminates phasic bursts by autocrine inhibition
of plateau potentials in SON magnocellular neurosecretory
cells in hypothalamic explants, an effect blocked by NENI
[145]: DYN appears to be the autocrine messenger in the
ability of VP to discharge lengthy repeating bursts of action
potentials in the SON following stress [955]. DYN suppresses
GABA inputs, thereby disinhibiting tuberomammillary neu-
rons. Whereas orexin A and B increased the frequency of
GABAergic potentials, their combination with DYN pro-
duced the same effect as DYN alone [318].

12.3. ORL-1 agonists and receptors

A review [213] summarizes the neurophysiologi-
cal activity in the ventrolateral PAG of several ORL-1
receptor ligands, including ([Phel-Psi(CH2-NH)Gly2]-
OFQ/N(1-13)NH2, [Nphel}-OFQ/N(1-13)NH2, J-113397
and NalBzOH. In tsA-201 cells, expression of N-type
channels with hujiman ORL-1 resulted in voltage-dependent
G-protein inhibition of the channel that occurred in the
absence of OFQ/N, the ORL-1 receptor agonist [80]. OFQ/N
inhibited the spinal C-fiber evoked response, post-discharge,
wind-up and input in neuropathic rats, but facilitated
post-discharge and wind-up in sham-operated rats; neither
effect was appreciably altered by CCK. [714]. The inhibition
of voltage-dependent Ca current in heterologous sensoty
neurons by OFQ/N was blocked by N-ethylmaleimide and
an ORL-1 antagonist, but not naloxone [1244]. OFQ/N also
reduced in a naloxone-insensitive manner the spontaneous
and stimulus-evoked activity in wide dynamic range neurons
in neuropathic rats with chronic constriction injury, but
not in sham or intact rats [1061]. OFQ/N infused into the
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basolateral nucleus of the amygdala decreased both basal and
systemic OFQ/N antagonist-induced increases in NE release
from the same nucleus [572]. The ORL-! agonist, Ro64-
6198, activated GIRK in ventrolateral PAG neurons, though
not to the same degree, potency or selectivity as OFQ/N
[212].

13. General activity and locomotion

Contralateral turning behavior was induced by DAMGO
and Delt, but not by DPDPE administered into the NAC
shell and core, effects respectively reduced by CTOP and
naltriben, and all blocked by combined D1/D2 DA antag-
onism. In turn, turning induced by combined D1/D2 DA
agonists in the NAC shell was blocked by naltriben, but
not CTOP [740]. Inbred mice showing high and normal
wheel running each displayed longer tail-flick latencies at
night, equal naloxone-induced reductions ‘in daytime tail-
flick latencies, and equal naltrexone-induced decreases in
wheel running activity [666]. The ability of repeated mor-
phine and fentanyl to induce locomotor sensitization cccurred
independent of intermittent administration and/or environ-
mental specificity [1132]. Wheel running in spontaneously
hypertensive rats increased hippocampal levels of Menk-
Arg-Phe and a five-fold increase in newly-generated hip-
pocampal cells, an effect reduced by naltrexone, but not NTL
Naltrexone and NTI decreased hippocampal proliferation in
non-running rats [886]. Laparotomy in rats reduced ambula-
tion rearing and sterotypy as well as reduced responding for
sucrose. Single or combined administration of morphine and
ketorolac reversed all but the surgery-induced rearing deficits
[733). The increased locomotor activity induced by mor-
phine, cocaine and amphetamine in Roman high-avoidance
relative to Roman low-avoidance rat strains was accom-
panied by greater basal DA and drug-induced DA release
in the NAC shell relative to the NAC core in the Roman
high-avoidance rat strain [647]. The psychomotor-sensitizing
actions of morphine were enhanced by social crowding in rats
that displayed higher motor activity in novel environments,
but not in rats that showed low levels of novel activity [1227].
Animals with low reactivity to a novel environment dis-
played more robust and persistent context-specific increases
in morphine-induced locomotor sensitization than animals
with high reactivity to a novel environment even though
the latter group displayed greater locomotor increases fol-
lowing acule morphine [S56]. A buprerorphine analogue,
thenorphine, inhibited the development of behavioral loco-
motor sensitization to repeated morphine and reduced acute
morphine-induced hyperactivity [1287]. Morphine-induced
increases in activity and body temperature were inhibited by
the CB1 antagonist, SR141716. Moreover morphine-induced
increases in c-fos in the C/P, cortex, NAC, lateral spectrum,
MPOA, PVN and dorsomedial hypothalamus, paraventricu-
lar thalamus, amygdala, VTA and Edinger-Westphal nuclei
were also inhibited by SR 141716 [1027]. Morphine-induced

locomotor sensitization was blocked by the SHT2A antag-
onist, SR46349B in alpha-1 beta-adrenergic receptor KO
mice, and by SR46349B and prazocin in wild-type mice.
DA release in the ventral striatum by morphine was blocked
by prazocin in both wild-type and alpha-1 beta-adrenergic
receptor KO mice [50]. Morphine-induced motor stimula-
tion and sensitization following chronic morphine treatment
was blocked by intra-VTA administration of the GABA-B
agonist, baclofen, an effect reversed by GABA-B antago-
nism. This sensitization was accompanied by increased c-fos
in the NAC shell, but not core, and effect blocked by VTA
baclofen [657]. The induction, but not the expression of
morphine-induced motor sensitization was dose-dependently
inhibited by the GABA transaminase inhibitor, valproate
[667]. Whereas carbamazepine failed to alter the induction or
expression of morphine~induced motor sensitization, it dose-
dependently potentiated the transfer of morphine-induced
sensitization [668]. Both the locomotor and CPP effects
of morphine were sensitized in mice previously exposed
to nicotine; these cross-sensitization effects were attenu-
ated by L-type voltage-dependent Ca(2+)-channel antago-
nists [103]. Whereas low doses of morphine and psychstim-
ulants (cocaine, methamphetamine) increase locomotion in
synergistic fashion, higher doses act in an additive fash-
ion [787]. Behavioral locomotor sensitization to repeated
intermittent morphine is accompanied by a blunted ACTH
response after druginjection [531). Morphine-induced hyper-
locomotion and reward were each enhanced by prenatal and
perinatal exposure to the environmental endocrine dirupter,
bisphenol-A [778]. Morphine-induced increases in locomo-
tor activity in the snail were blocked by specific pulsed
magnetic fields [1021). '

OFQ/N and the ORL-1 antagonist, UFP-101administered
into the SN, pars reticulata respectively impaired and
enhanced rotorod performance, respectively relaxed and
contracted triceps muscle tone, and respectively reduced
and stimulated striatal DA release [730]. UFP-101 in the
SN reduced haloperidol-induced akinesia and stabilized the
haloperidol-induced increases in nigral glutamate release
[729]. OFQ/N suppressed locomotion and NAC DA release
in wild-type but not ORL-1 KO mice, effects blocked by
the ORL-1 antagonist, UFP-101. In turn, UFP-101 alone
suppressed locomotion and NAC DA in both genotypes
[614]. Suppression of motor activity was most pronounced
following OFQ/N administration into the VTA, to a lesser
degree in the NAC, but failed to occur following SN or
CP administration; these effects were reduced by J-113397
[809]. OFQ/N produced biphasic increases (high doses)
and decreases (low doses) in locomotor activity which was
blocked by both peptide and synthetic ORL-1 antagenists
and NalBzOH, but not naloxone. The ORL-1 agonist, Ro
646198 monophasically inhibited locomotor activity which
was reversed by a peptide ORL-1 antagonist and NalBzOH
{636]. Repeated naloxone blocked the acquisition, but not
the expression of increased wheel running in dopamine D2L
KO mice [1160]. The ability of liposaccharide to increase
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locomotor activity and alter nigrostriatal catecholamine
levels was blocked by post-treatment but not by pretreatment
with a combination of naloxone and indomethacin [1191].
Whereas ginsenoside Re increased morphine-induced
hyperactivity, but not morphine-induced CPP, ginsenosides
Rd, Rb2 and Rgl antagonized morphine-induced CPP
without affecting morphine-induced hyperactivity [423].
Administration of pituitary adenylate cyclase activating
polypeptide 38 produced naloxone-sensitive short-term
(0.5h) increases and longer-term (3-6h) decreases in
locomotion and rearing [4]. Muscimol markedly increased
locomotor activity in mice lacking dopamine D2 receptors
that was associated with striatal Enk gene expression
{301

14. Gastrointestinal, renal and hepatic functions

The following section will review opioid effects described
over the past year for gastric function (Section 14.1), intesti-
nal function (Section 14.2), nausea and emesis (Section 14.3),
hepatic function (Section 14.4), glucose function {Section
14.5) and renal function (Section 14.6).

14.1. Gastric function

A review [1218] summarizes opiate inhibition upon gas-
tric emptying, intestinal transit, intestinal secretion of water
and electrolytes, and suppression bile transport into the duo-
denum in terms of the overall function of the enteric nervous
system. MOR in the guinea pig is confined to the muscle
and dep muscle plexus of the myenteric plexus mostly in the
small intestine, stomach and proximal colon respectively. In
human gut, MOR and DOR are found in myenteric and sub-
mucossal neurons, whereas KOR is confined to the myenteric
plexus [1080]. Morphine-induced inhibition of GI transit and
gastric emptying was observed using fluorescent polysterene
microbeads and flow cytometry rather than radiolabeled
markers [512]. Morphine stimulates ¢cNO in the mouse
stomach, small intestine and large intestine, effects reversed
by naloxone and L-NAME [1073]. Intrathecal diamorphine
delayed gastric emptying that occurs immediately following
elective spinal Caesarean section [602]. Central OFQ/N
delayed gastric emptying, inhibited GI transit, and delayed
expulsion in an OFQ/N antagonist-sensitive, but naloxone-
insensitive manner. However, the decreases in gastric
secretion by OFQ/N were blocked by naloxone [144]. Inges-
tion of placenta blocked the inhibition of GI transit induced
by central, but not systemic morphine [244]. Decreased
weight gain induced by experimental stress was blocked by
the arginine-containing mu and delta opioid agonist, sedatin,
presumably by increasing DNA synthesis in the epithelium
of the gastric fundus [351]. An imidazole, Compound 4a,
with good binding affinities for the DOR and MOR reduced
GI propulsive motility, but failed to produce analgesia
[142]).

2669

14.2. Intestinal function

A review [481] examines the ability of peripherally-acting
opioid antagonists {/N-methylnaltrexone, alvimopan) to nor-
malize opioid-induced bowel dysfunction without compro-
mising central opioid analgesia. A review [410] indicates that
central (naloxone) and peripheral (alvimopan, methylnal-
trexone) reverse morphine-induced GI transit in mice and
can produce viscero-motor hypersensitivity in the absence
of opioids, suggesting a constitutive function. In contrast,
naltrexone, but not alvimopan fails to hypersensitivity to
the visceromotor response induced by colorectal distension.
In vitro modeling indicates that the prokinetic activity of
naloxone is apparent where peristalsis is compromised by
drug-induced suppression of motor nerve activity or by mod-
ulation of endogenous processes using receptor antagonists
or inappropriate intraluminal distension [984]. Morphine
decreased gastric contractions during pressure-controlled
and volume-controlled gastric distensions, but decreased
the rate of lower oesophageal sphincter relaxations during
only pressure-controlled distensions [881]. Antral activity is
inhibited by DAMGO, but not by DADL or U50488H; this
inhibitory effect was reversed by either guanethidine or pro-
pranolol [1134]. Laporectomy in the presence and absence
of intestinal manipulation increased MOR endocytosis in
cholinergic and nitergic neurcns that parallelled the manip-
ulations delay of GI transit {873]. Heroin decreased both
basal and vagal-electrically stimulated acid and pepsin secre-
tions in intact, but not vagotomized animals [915]. DAMGO
stimulated whole nerve mesenteric afferent discharge that
was blocked by alvimopan, Alvimopan also attenuated the
low-thresheld, but not high threshold response in chronically
vagotomized animals [414]. Diprenorphine binds to a sin-
gle high-affinity site in myenteric neural membranes that is
displaced by naloxone. Delta and kappa antagonists displace
diprencrphine from two distinct sites, whereas DPDPE, SNC-
80 and U69593 display diprenorphine from three distinct
myenteric sites {1129]. The putative kappa agonist, asimade-
line decreased short-circuited currents in the colon epithelium
and trachea airways in a concentration-dependent manner
that was insensitive to either naloxone or NBNI [998]. Inhi-
bition of GI transit by either peptide YY or serotonin was
blocked by naloxone administered into the proximal, but
not the distal gut [677). Bile-duct-ligated animals displayed
naltrexone-reversible decreases in GI trnasit relative to con-
trols, and failed to display morphine-induced slowing of GI
transit [385]. Electrically-stimulated contractions of strips of
the rat cathartic colon were respectively inhibited by mu and
kappa agonists and stiraulated by mu antagonists {681]. The
inhibitory action of ginger on rat ileal motility as produced
by Ach or electrical stimulation was blocked by naloxone as
well as alpha-2 adrenergic, CB-1, or NOS antagonism {130].
Transdermal fentany! had lower incidences of constipation
in patients treated for chronic pain than oxycodone or mor-
phine [1072]. Intravenous pentoxifylline increased recovery
of bowel function in patients undergoing colorectal cancer
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surgery, and reduced morphine consumption and the peri-
operative cytokine response [700]. The vse of peripherally-
acting opioid antagonists and opioid rotation are the most
effective treatments in managing opioid-induced bowel dys-
function in cancer patients [1112].

14.3. Nausea and emesis

Methylnaltrexone and ondansetron each decreased kaolin
consuraption in a rodent model of emesis [51]. Dexametha-
sone at a dose of 8§ mg was effective in reducing emetic
episodes in surgical patients receiving patient-controlled
morphine delivery [655]. Pretreatment, but not co-treatment
or post-treatment of acepromazine prior to morphine signifi-
cantly lowered vomiting in dogs [1153]. Morphine produced
less nausea than meperidine in an emergency room popula-
tion following parenteral administration {1023]. Haloperidol
reduced the incidence of postoperative nausea and vomit-
ing after spinal anesthesia and morphine in surgical patients
[867].

14.4. Hepatic function

Morphine induced hepatic oxidative damage including 8-
OHdG, protein carbonyl group and malondialdehyde, effects
reversed by the antioxidants, glutathione and ascorbic acid
[1282]. Hepatitis induced by agonisitc anti-Fas antibodies
was reduced and survival time was increased by prior or
simultaneous naltrexone or naloxone methiodide treatment.
Morphine treatment enhanced anti-Fas antibody-induced
mortality [525]. Mice with a sickle cell transgene KO dis-
played higher morphine and M3G formation in liver micro-
somes [805]. Naltrexone does not appear to produce clinically
significant liver disease or exacerbates serious pre-existing
liver disease in the treatment of heroin and alcohol abuse
[143]. In liver transplant patients, those on methadone main-
tenance required more intraoperative analgesia and postoper-
ative opioids, had greater hepatitis virus infection and lower
survival [1200]. Plasma OFQ/N progressively elevates up to
17-fold during the development of hepatocellular carcinoma
[493). DPDPE clearance did not differ in livers of control
and multi-drug resistance associated protein-deficient rats,
but biliary excretion of DPDPE was lower in these deficient
animals and lowered further by the P-gp inhibitor, GF120918
{477). A 10-fold increase in plasma OFQ/N was noted in
patients with hepatocellular carcinoma with smaller increases
noted in patients with Wilson disease or primary biliary cir-
thosis [1105]. Opioid growth factor resuited in resolution of
liver metasteses and regression of a pancreatic tumor in can-
cer patients [1041).

14.5. Glucose function
BEND improves insulin resistance in fructose-fed rats

[1090). Cerulein-induced pancreatitis measured by increased
serum amylase and spinal c-fos activation of T9 and

T10 was reduced by buprenorphine administration [590].
Electroacupuncture-induced hypoglycemia is blocked by
naloxone, but not in either MOR KO or adrenalectomized
mice [678). The isoftavone, puerarin, lowers blood glucose
and increases plasma BEND in STZ-diabetic rats, effects
blocked by the alpha-1 adrenergic antagonist, prazosin, the
opioid antagonists, naloxone and naloxonazine, and in MOR
KO mice [207]. Tetrandrine increased BEND immunoreac-
tivity parallel to its glucose-lowering effects in STZ-diabetic
rats with the lowered plasma glucose effect prevented by
naloxone, naloxonazine, bilateral adrenalectomy and nico-
tinic receptor blockade, and absent in MOR KO mice {496].
Epidural analgesia with ropivacaine and morphine did not
suppress catabolic responses to surgery as glucose adminis-
tration decreased protein breakdown, protein synthesis and
glucose production to the same degree as the control group
[999]. Hyperinsulinemic post-menopausal women treated
with naltrexone reduced fasting and stimulated the insulin
response to a glucose load, and correspondingly improved
hepatic extraction {255). Remifentanil increased blood glu-
cose in cardiac patients relative to fentanyl and morphine
without showing differences in blood pressure, heart rate or
cortisol measures [82]. Twenty-nine percent of young adults
with Type I diabetes admitted to using street drugs with 68%
taking them more than once a month and 72% unaware of the
adverse effects on their diabetic symptoms [828].

14.6. Renal function

Morphine increased renal plasma, creatinine and urea
clearance as well as urine potassium concentration {1098].
DAMGO, but not DPDPE or U69593 into the ventrolateral,
butnot lateral or dorsolateral PAG suppressed volume-evoked
bladder contractions and increased arterial pressure [739].
An enkephalinamide analogue and mu receptor agonist,
c¢UENKS, stimulated excretion of urine, sodium, potassium,
¢GMP and urinary atrial natriuretic peptide activity, effects
blocked by naloxone, but not by the mu-1 antagonist,
naloxonazine or the peripherally-acting antagonist, naloxone
methiodide [428]. fDmt]-DALDA increased urine volume
and excretion and produced mild hypertension, effects fully
reversed by naloxone, partially reversed by naloxone methio-
dide, and unaffected by either naloxonazine or L-NAME
[429]. Low doses of U50488H to increase voiding efficiency
without changing bladder capacity were effective in rats
with spinal cord injury in a NBNI-sensitive manner [1249].
Administration of the kappa-2 agonist, GR-89,696, but not
the kappa-1 agonist, US0488H decreased the number of
bursts, but not the frequency during micturition in female rats
in a naloxone-sensitive manner [416]. An ORL-1 receptor
analogue, ZP120C induced aquaresis, the excretion of solute-
free urine by indirectly inhibiting VP-2 receptor mediated
stimulation in collecting duct water reabsorption in the kid-

" ney [431]. Intrathecal morphine and sufentanil each reduced

bladder function by dose-dependently suppressing detrusor
contractibility and decreasing sensation to urge [631].
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Naltrexone plasma levels were not markedly affected by
hemodialysis in patients with impaired renal function {5591,

15, Cardiovascular responses

This section will review the work done in the last year
on the role of opioids upon heart rate (Section 15.1), cardio-
protection and ischemic preconditioning (Section 13.2) and
blood pressure (Section 15.3).

15.1. Heart rate

Morphine produced greater hypotension and bradycardia
in spontaneously hypertensive than in Wistar-Kyoto and
Sprague-Dawley rats as well as enhanced Phase I and Phase
11 analgesic responses on the foramlin test [713]. Combined
treatment with morphine and fentanyl decreased heart rate,
diastolic and MAP and total peripheral resistance in dogs
anesthetized with sevoflurane [804]. Morphine reduced
isoflarane-induced minimal alveolar concentration to the
same degres in the presence and absence of the COX-2
inhibitor, meloxicam [985]. The mu agonist, DAMGO
increased MAP, HR and RSNA to a greater degree in
obese animals maintained on a high-fat diet relative to con-
trols, whereas the mu antagonist, BFNA produced greater
decreases in these responses in obese high-fat diet rats.
Normal, but not obese rats showed respective decreases and
increases in MAP following the kappa agonist, DYN and the
kappa antagonist, NBNI [74]. The kappa agonist, spiradoline
inhibited glycinergic, but not GABA-ergic synaptic inputs to
cardiac vagal neurons without altering voltage gated calcium
currents in cardiac vagal neurons; the delta agonist, DPDPE
was without effect on any of these measures {1192]. Kappa
agonists were most effective in blocking dysrhythmia in
which US0488H acted like the beta-blocker, propranolol,
and was blocked by glibenclamide or chelerythrine, but not
calcium channel blocker pretreatment [1152]. HR and blood
pressure were decreased by admindstration of endomerphin-
2 into the NTS, an effect blocked by naloxonazine as well as
competitive and non-competitive NMDA antagonism [569].
Although fentanyl itself increased HR and blood flow in
the ovine fetus, it did not alter the increased HR induced by
cutaneous electrical stimulation [1043]. Acetic acid or for-
malin injection depresses HR and MAPF, an effect prevented
by either lidocaine or NTI pretreatment in the ventro-lateral,
but not dorso-lateral PAG; mu and kappa antagonists were
ineffective [182]. Naloxone caused concentration-dependent
depressions of peak force, maximal rate of force devel-
opment and rapid cooling contracture of guinea pig right
ventricular papillary muscles {597]. Bile duct-ligated rats
displayed iower HR and MAP, an effect reversed by chronic
naloxone. Chronic naloxone failed to affect the resistance
of these rats to epinephrine-induced arrhythmia [433].
Anandamide-induced relaxation was significantly potenti-
ated in mesenteric vascular beds in bile duct-ligated rats, an

effect blocked by L-NAME and aminoguanidine, and poten-
tiated further by chronic naltrexone [779]. Administration
of naloxone and peripherally-acting naloxone methiodide
to morphine-tolerant rats increased c-Fos immunoreactivity
in the left and right ventricles of cardiomyocyte nuclei,
and the former, but not latter antagonist increased PVN
Fos expression [398]. Naloxone-precipitated morphine
withdrawal increases c-fos expression in cardiomyocyte
nuclei in the right and left ventricles as well as increased
NE turnover, effects blocked by alpha-2, but not alpha-1
or beta adrenergic antagonists [397]. Naloxone-precipitated
morphine withdrawal also increased c-fos activity, tyrosine
hydroxylase activity and NE turnover in the left and right
ventricles [399]. In selegiline-treated dogs, butorphanol
and medetomidine, but not oxymorphone decreased HR
[294]. Intravenous BEND increased left ventricular ejection
fraction and stroke volume, and reduced vascular resistance
in patients with mild to moderate chronic heart failure
[249]. Oxycodornie in combination with enflurane anesthesia
provided hemodynamic stability during and after coronary
bypass grafting [905]. Adenosine infusions produced chest
pain without hemodynamic changes in the presence and
absence of naloxone and BEND in human volunteers [970].
Patients with cardiogenic pulmonary oedema suffer high in-
hospital mortality, and patients treated with catecholamines,
corticosteroids and/or morphine have a greater probability
of mortality [349]. Dexmedetomidine administered during
caridac surgery requiring mechanical ventilation reduced
the necessity for rescue opiate analgesics, maintained HR
and blood pressure, and produced effective sedation and
analgesia [509]). Neither naloxone nor codeine altered HR,
blood pressure or muscle sympathetic nerve activity during
head-down rotation in either young or old subjects [924].

15.2. Cardioprotection and ischemic preconditioning

A review [883] examines cross-talk between opioid and
beta-adrenergic receptors in terms of the attenuation by opi-
oid receptor agonists to attenuate beta-adrenergic receptor-
mediated positive inofropic effects and cAMP increases
through heterodimerization of these receptors, counterbal-
ancing of functional G-protein signalling and interfaces at
downstram signalling events. Chronic morphine treatment
was more effective than acute morphine in improving func-
tional recovery during an ischemia-reperfusion paradigm
[876]. Whereas acute morphire produced functional recov-
ery from ischemia-reperfusion in young, but not senes-
cent hearts, chronic morphine treatment produced effects
in both young and aged animals [877]. Morphine protected
cerebellar Purkinje cells against cell death under in vitro-
simulated ischemia-reperfusion conditions [676]. The abil-
ity of morphine to reduce infarct size and protection dur-
ing the ischemia-reperfusion paradigm was inhibited by the
phosphatidylinositol-3 kinase inhibitors, wortmannin and
LY294002 [412]. Morphine-induced reductions in infarct
size were mimicked by ibuprofen, and their combined effects
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were blocked by the 12-lipoxygenase inhibitor, baicalein.
Aspirin co-treatment abolished morphine-induced reductions
in infarct size {413]. The abilities of morphine and ischemic
precenditioning to protect against infarct size produced by
ischemta-reperfusion injury were blocked by both naloxone
and the delta antagonist, NTI with the latter also reversing
the ameliorative actions of morphine on apoptosis [843].
Morphine-induced reductions in infarct size were abolished
in inducible NOS KO mice, and following the inducible NOS
blocker, methylthiourea sulfate [535). Intrathecal morphine
was as effective as systemic morphine in reducing infarct
size induced by ischemia, and protected heart rate better
than systemic morphine during ischemia-reperfusion treat-
ment [411]. Antecedent apnea reduced infarct size of subse-
quent sustained ischemia in a naloxone-insensitive manner
[290]. In a hypothermic myocardial ischemia model, func-
tional recovery at 45 min of reperfusion was increased by
the delta agonist, DADL and the kappa agonist, UUS0488H,
but not fentanyl. Naltriben and NBNI respectively reversed
the delta and kappa agonist effects [952]. In turn, naltriben
and NBNI alone resulted in imapired functional recovery in a
return of isovolumetric-developed pressure in this hypother-
mic myccardial ischemia model {253]. Moreover, both cold
exposure and restraint stress attenuated infarct size induced
by myocardial ischemia and reperfusion, effects blocked by
general, mu, delta and kappa antagonists [1222]. The delta-
I receptor antagonist, BNTX blocked the protective ability
of remote ischemic preconditioning to reduce infarct size,
but did not change infarct size per se [1199]. BRL 52537,
a kappa receptor agonist significantly attenuated infarct vol-
ume in cortex and striatum following middle cerebral artery
occlusion in rats [206]. The cardioprotective effect of the
delta agonist, SNC-121 in the rat ischemia model was unaf-
fected by opioid antagonism or pretreatment with pertussis
toxin, but was reduced by a free radical scavenger [872]. The
cardioprotective effects of the delta agonists, BW373U86
and SNC-121 in the rat ischemia model were also atten-
vated by the COX-2 inhibitor, NS-398 and the inductible
NOS inhibitors SMT or AG [871]. Like morphine, the delta
agonist, BW373U86 and the kappa agonist, U50488H each
produced cardioprotection in post-ischemic hearts that was
respectively blocked by the delta antagonist, BNTX and the
kappa antagonist, NBNI [878]. Moreover, the kappa agonists,
ICI204448 and BRL52537 also produced cardioprotection
with the former, but not the latter blocked by NBNI [879].
Remifentanil, a potent and short-acting phenylpiperidine opi-
oid dose-dependently reduced infarct size in a manner similar
to ischemic preconditioning; this effect was blocked by mu,
delta and kappa antagonists [1281}. The ability of interlevkin-
2 to reduce infarct size and lactate dehydrogenase in response
to ischemia and reperfusion was blocked by the kappa antag-
onist, NBNI, but not the delta antagonist, NT1 [171]. Left
vagal stimulation increased DYN release and inhibited SP
release from rat thoracic spinal cord during cardiac ischemia
[498]. OFQ/N relaxed porcine arterial rings and inhibited
PGF2aipha-induced vasoconstriction, responses blocked by

removal of endothelium, ORL-1 receptor antagonism and
the presence of L-NNA and ¢GMP, but not naloxone [1233}.
NMDA, cerebrovascular dilation was impaired following fluid
percussion brain injury in pigs with OFQ/N contributing to
this impairment through a cycooxygenase-dependent gen-
eration of superoxide [47]. High, but not low frequency
femoral nerve electrostimulation significantly reduced in a
naloxone-reversible manner myocardial infarct size produced
by myocardial ischemia and reperfusion [298]. Hemorag-
ghic shock effects of vascular smooth muscle cells as mea-
sured by decreases in intracellular Ca2+ concentration were
decreased by mu, delta and kappa antagonists as well as NE
administration [555]. Patients with coronary artery disease
following myocardial ischemia and reperfusion displayed
augmented myocardial and peripheral BEND concentrations
[194]. Patients undergoing thoracoabdominal aortic surgery
are at risk for ischemic spinal cord injury with elevated CSF
glutamate an excellent indicator; naloxone is effective in
reducing CSF glutamate during this procedure [633].

15.3. Blood pressure

Morphine impaired MAP-induced increases by lac-
tated Ringer's fluid resuscitation in animals exposed to
trauma and hemorrhage, and increased both mortality and
lipopolysaccharide-induced lung and spleen TNF expres-
sion [782]. Electroacupuncture decreased blood pressure
in cats, and increased c-fos in the ventro-lateral meduila
and PAG in close proximity to BEND and Menk fibers
using both single- and double-labeling [424]. Rats with sino-
aortic dennervation display tachycardia and hypertension
accompanied by increased NE and decreased hypothala-
mic BEND and Lenk after 1 week, but not after 18 weeks.
Chronic stress reinstates these deficiencies [1012]. Fentanyl
attenuated Ach-induced vasorelaxation in the aortic smooth
muscle rings in the presence of naloxone and pirenzepine,
but not 4-diphenylacetoxyl-N-methylpiperidine methiodide
[1053]). Animals subjected to myocardial ventricular fibril-
lation and administered cardiopulmonary resuscitation dis-
played improved blood pressure, cardiac indexes and survival
times following the delta antagonist, pentazocine [1095].
Naloxone enhanced cardiovascular reactivity to cold pain
without affecting diffuse noxious inhibitory controls. Further,
the greater cardiovascular responses to noxious cold were
associated with enhanced diffuse noxious inhibitory control
[310]. Bovine-derived lactoferrin decreased MAP, but not
HR, effects blocked by centrally-acting, but not peripherally-
acting forms of naloxone as well as NOS synthase inhibition
with L-NAME [459]. Vasadilation was blunted by fluid per-
cussion injury in pigs, and effect restored by an OFQ/N
antagonist [354]. Morphine produced a naloxone-sensitive
synergy with dextromethorphan in relaxing mesenteric artery
rings preconstricted with phenylephrine {514). Opioid-based
anesthesia during carotid endarterectomy produced more
episodes of intraoperative hypotension and hypertension, but
fewer epsidodes of tachycardia than hypnotic-based anes-
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thesia with equal pain scores [393]. Preferential selection
of combined epidural and general anesthesia with fentanyl
and propofol is recommended in subjects with high risk for
venous thromboembolism [282].

16. Respiration and thermoregulation
16.1. Respiration

A review [1161] indicates that resistive breathing pro-
duced by cytokine-induced increases in BEND decreases the
activation of the respiratory muscles and change the pat-
tern of breathing to rapid and shallow, possibly to reduce
further injury to respiratory muscles. Fentanyl decreased
phrenic nerve and vagus nerve respiratory discharges and
firing of post-inspiratory neurons, an effect prevented by the
D1 DA agonist, SKF-38393 which in turn was reversed by
the D1 DA antagonist, SCH23390 [640], Chronic methadone
in rats decreased respiratory rate and HR with partial tol-
erance developing during active nocturnal pericds [665].
Naloxone blocked the decreased respiratory rate and minute
volume induced by DAMGO, but not by the cannabinoid
agonist, WIN 55212-2 [891]. Morphine decreased isofluane
minimum alveolar concentration in goats, an effect unal-
tered by flunixin meglumine co-administration [296]. Chil-
dren with obstructive sleep apnea and hypoxemia appear to
need less morphine following adeno-tonsillectomy as they
display oxygen desaturation [149]. Exposure to high sin-
gle doses of morphine or M6G preduction by slow-release
morphine increases the risk of acute chest syndrome as a
complication of sickle cell disease [619]. OFQ/N inhibited
the ability of feoterol, a beta-2-adrenergic agonist to sensitize
human isolated bronchi, an effect insensitive to naloxone pre-
treatment [328]. The ORL-1 agonist, Ro-64-6198 inhibited
capsaicin-induced cough in the guinea pig, and significantly
reduced capsaicin-induced Ca2+ responses in nodose gan-
glion cells [750}. Intra-oesophageal HCI infusions increased
plasma extravasation in the bronchi and trachea, an effect
reversed by vagotomy. OFQ/N and a petide agonist inhibited
airway microvascular leakage that was blocked by an ORL-
1 antagonist, but not naloxone. Morphine produced similar
effects blocked by naloxone, but not by the ORL-1 antagonist
[960). Naloxone was effective in reversing deep anesthesia
with fentanyl allowing quick tracheal extubation for ventila-
tory support after abdominal surgery [1109]. Normal human
volunteers receiving morphine displayed similar pharmaco-
dynamic responses for simultaneously-collected respiratory
(breathing, arterial blood measures) and analgesic variables
[261]. Morphine was prescribed in 41% of Taiwanese cancer
patients for the control of dyspnea [497].

16.2. Thermoregulation

Microinjection of delta-2 (Delt), but not delta-1 (DPDPE)
agonists into the anterior MPOA produced immediate hyper-

thermia that was blocked by the delta-2 antagonist, nal-
triben [87]. Racemic tramadol and its levo-isomer reversed
reserpine-induced alterations in body temperature and pto-
sis in a manner similar to that of the anti-depressants,
desimpramine and venlafaxine [951]. ORL-1 KO mice
display higher core body temperatures, but no changes
in either spontaneous activity or plasma cortisol levels
{1143]. The increases in tail skin temperature induced
by naloxone-precipitated morphine withdrawal in ovariec-
tomized mice were blocked by the SHT-2A/2C agonist, DOI
(1029]. Inthethecal meperidine when paired with bupivacaine
and morphine decreased shivering in patients undergoing
cesarean section [962].

17. Immunological responses

A review [362] describes the immune deficiencies,
hypothalamic-pituitary axis activation and activation of pro-
inflammatory cytokines like TNF-alpha following heroin and
cocaine self-administration. Proinflammatory chemokines,
especially C-C chemokine ligand 3 induced internalization
of MOR in MOR/HEK293 cells, impaired MOR-mediated
inhibition of cAMP accumulation and DAMGO-elicited
Ca2+ responses [1273]. Sustained exposure to morphine
and HIV Tat(1-72) viral protein preferentially decreases
glial precursors and astrocytes through a MOR-mediated
mechanism together with caspase 3 activation [584]. Music
increased MOR expression in peripheral blood mononuclear
cells [1074]. Chronic morphine decreased exogenous phase
S markers as well as proliferating cell nuclear antigen and
phosphorylated histone, suggesting that chronic morphine
treatment results in shorter Gap2/mitosis [719]. Morphine
displays dose-dependent antioxidant properties inhibiting
the peroxidation of lineolic acid emulsion [420]. Morphine
protects against glutamate-induced toxicity of primary rat
necnatal astrocytes, an effect that is not blocked by naloxone
or altered by mu, kappa or delta agonists [651]. Morphine and
tramadol each increase the amount of red neurcn apoptosis
in cortical and hippocampal regions with higher incidences
in the occipital and temporal lobes following tramadol [48].
Morphine increased the sensitivity of NIH-3T3 cells to vin-
blastine, but not colchicine, but failed to alter P-glycoprotein
expression in any cancer cell lines [861]. Morphine and
DAMGO enhanced NF-kappaB promoter-directed luciferase
activity and induces SP expression in NT2-N neurons that was
blocked by general and mu antagonism and the non-peptide
SP antagonist, CP-96,345 [1193]. Morphine activates the
accumulation of STV-infected cells in the G1 phase of the cell
cycle through increases in Ca(2+), PKC and phosphorlyated
ERK1/2 [670]. The S(+) isomer of methadone preduced far
greater immunosuppression thatn the potent analgesic R(—)
isomer of methadone [507]. A similar pattern of SIV cell
effects are also observed following Menk [671]. DADL slows
down the synthetic activity of PC3 prostatic cancer cells by
interfering with nuclear functions [66]. Morphine decreases
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bloed leukocyte expression of the major histocampatability
complex class Il and its protein expression on B lympho-
cytes, as well as inhibit interleukin-4-induced up-regulation
of the latter [76]. Morphine promoted macrophage apoptosis
through the production of supercxide and NO, effects blocked
by antioxidants and diphenyleneiodonium chloride [100].
Combined administration of morphine and lipopolysac-
charide induced greater vascular endothelial cell-induced
apoptosis and permeability than either agent alone {683]. This
combination also produced hypothermia, decreased MAP,
increased plasma thrombin-anti-thrombin complex and
accelerated progressive intramicrovascular coagulation and
leukocyte-endothelial adhesion [837]. Morphine enhanced
the effect of HIV gp160 protein on macrophage apoptosis,
effects blocked by NOS inhibition [565]. The ability of mor-
phine to stimulate HIV-infected CD4(+) cells was inhibited
by the cannabinoid agonist, WIN55,212-2 [887]. Morphine
induces greater loss of CD4(+) T cells and & higher viral load
in HIV and simian-HIV-infected rhesus macaques [632], and
aggravates the apoptosis of simian HIV infected cultured
CEM x 174 cells [1230]. Morphine triggers apoptosis in
mesangial cells of mice with control and HIV-1 genes [783].
Morphine reverses retinoic acid receptor-induced TNF-alpha
suppression in activated U937 cells [794]. Morphine also
reverses TNF-alpha suppression induced by LG101305 and
ciglitazone in phytohemaggutinin-stimulated U937 cells
[964). NE augmented intrathecal morphine’s decrease in
natural killer cell activity in female patients undergoing hys-
terectomy [1247]. Monocytes and macrophages produced
by inflammation were the predominant producers of opioid
peptides [135]. Morphine tolerance development induced
glial activation and enhanced pro-inflammatory cytokine
levels in the lumbar spinal cord that was temporally corre-
lated with hyperaigesia. The glial modulator, propentofylline
administered during the induction of morphine tolerance
attenwated both inflammatory and hyperalgesic responses
[916]. Chronic morphine also decreases IFNgamma and
interleukin-2 mRNA and increases interleukin4 and -5
mRNA accumulation in murine splenocytes [963]. Fever,
decreased ¢cAMP production and increased hypothalamic
PGE?2 release were elicited in a naloxone-sensitive manner
by interferon N-alpha and 129-Ser-interferon N-alpha, but
not 38-Leuv-interferon N-alpha [1195]. Morphine withdrawal
produced deficits in macrophage function in spleen cells
that depended upon the ratio of co-cultured intact and
withdrawn cells {917]. Inflamed paw tissue clicited BEND
and POMC release colocalized with prohormone convertase-
1 and -2, carboxypeptidase E and 7B2 in macrophages
and monocytes [796). Morphine dose-dependently and
naloxone-reversibly produced anti-inflammatory effects
upon carrageenan-induced oedema in the mouse paw that
corresponded in increases in interleukin-1 serum levels
[904]. Short-term (24 h) withdrawal from both morphine and
cocaine administered over 7 days suppressed proliferation
responses of peripheral blood T-lymphocytes stimulated by
concanavalin A, and elevated plasma corticosterone levels

[52]. Morphine-induced immunosuppression was blocked
by systemic and central administration of the D2 DA recepior
agonist, 7-OH-DPAT {989]. Epidural opiate treatment with
anesthesia preserves lymphocyte, but not monocyte immune
function after major spinal surgery [ 1176], and post-operative
pain treatments using oxycodone or diclofenac also alters
the phytohaemagglutind-induced leucocyte proliferative
response in children receiving surgery [1178].
Endomorphin | and 2 are found predominantly in
macrophages and B cells, but not in T cells of the
spleen [1005]. Endomorphins increased apoptosis in human
leukemia HL-60 cells by down-regulating Bcl-2 and up-
regulating Bax, Fas and FasL expression [679]. Migrations of
peripheral blood nonadherent mononuclear cell and neuropil
chemotaxis toward BEND, angiotensin II, somatostatin and
interleukin-8 were deactivated by naloxone [564]. Menk and
its metabolites enhanced and accelerated the ability of a puri-
fied derivative of tuberculin to induce delayed-type hypersen-
sitive inflammatory reactions when injected together with
CFA [1032]. Menk stimulated hydrogen peroxide and NO
production in rat peritoneal macrophages, effects enhanced
by combined mu and kappa antagonism or kappa antago-

. nism alone [1177]. Menk administered intraperitoneally, but

not by either osmotic minipump or intratumoral administra-
tion reduced human squamous cell carcinoma in the head
and neck of nude mice, delaying tumor appearance by 3
days and reducing tumor volume [749]. The autoimmune dis-
eases of polymyositis and dermatomyositis induce increased
plasma NPY levels and decreased BEND, ACTH and CGRP
levels [685]. Whereas acute OFQ/N upregulates activation
marker expression {CD28) and causes proliferation of TNF-
alpha secretion, re-stimulation inhibits proliferation presum-
ably by upregulating CTLA-4 expression [1179]. Repeated
electroacupuncture in estrdiol valerate-injected rats increased
hypothalamic BEND and then altering CD4+ T and CD&+
T cells [1076]. Migrations of leukocytes to L15 medium
in mice, fish and frogs, and to zymosan-activated serum in
mouse and fish were respectively increased and decreased by
pretreatment with mu and delta, but kappa agonists, effects
blocked by appropriate mu and delta antagonists [ 189}. Fen-
tanyl, but not buprenorphine decreased lymphoproliferation
measures of natural killer cell activity and interleukin-2 and
interferon gamma production at doses that produced simi-
lar analgesic profiles [735]. Interleukin-6 induces MOR, but
not DOR mRNA in the human neurobalstoma cell line SH
SY5Y [128). Buprenorphine suppressed splenic natural killer
cell activated lymphocyte proliferation and IFN-gamma pro-
duction in a naltrexone-sensitive manner [174]. Codeine and
meperidine induced mast cell activation with the release of
histamine and tryptase in a naloxone-independent manner
[119]. Opiate growth factor inhibited anchorage-independent
growth in human cancer cells [1258), and is present in
whole brain by embryonic Day 20 with levels increasing
during the first post-natal week, and persisting at these
levels into adulthood [1259]. Whereas DPDPE promotes
superantigen-induced clonal deletion during T-cell develop-
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ment, this response is significantly impaired in DOR KO
mice [741]. Animals lacking KOR displayed higher antibody
titers for a series of immune subtype responses. Although
two morphiceptin analogues bound with greater affinity than
endomorphins or morphiceptin itself to human breast can-
cer MCF-7 cells, neither analogue decreased cell prolifer-
ation {523]. Heroin self-administration suppresses immune
function, increasing infection and susceptibility to disease
[1198]. Rotation stress suppressed in a naloxone-reversible
manner immune inflammation in delayed-type hypersensi-
tivity, increased antibody-forming cells and nucleated cells
in regional lymph nodes {381].

Naltrexone blocks mu-opioid receptor negative feedback
function upon delta opioid receptors thereby allowing delta
agonists to stimulate the cytolic activity of splenic NK cells
[134]. Naltrexone protected mice from septic shock induced
by lipopolysaccharide and D-galactosamire, but not the same
symptoms produced by pairing staphlococcal eneterotoxin B
with D-galactosamine or an agonistic anti-Fas antibody [409].
Pertussis toxin blocks cyanide generation in pheochromocy-
toma cells induced by muscarinic agonists, but fails to affect
nalxone-induced cyanide generation [422]. NTI-induced
inhibition of the allogenic mixed lymphocyte reaction was
observed in both wild-type and triple MOR-KOR-DOR KO
mice, indicating that NTI is not acting through a classic
opioid receptor [379]. Cocaine-induced increases in HIV-1
expression in microglial cells were reduced by both kappa
agonists and the kappa antagonist, NBNI [382]}. Compounds
structurally related to the delta antagonist, NTI produced
immunosuppression as demonstrated by interleukin-2 release
in mitogen-activated peripheral blood mononuclear cells
[263].
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