Hydrofluoric acid burns Clinical results of decontamination and experimental data on living animals

Laurence Mathieu, PhD, Scientific Action Group PREVOR Laboratory

www.prevor.com

Some data about hydrofluoric acid (HF)

- Is used in numerous industries: mineral (uranium), ceramic glass and cristal factory (engraving, polishing frosting), metal industry (cleaning), organic industry (manufacturing of fluoride by-products, catalyst), paper industry, analytical chemistry
- **Manufacturing of HF in USA : 375,000 tons in 1998; 400,000 tons in2002**
- **More than 1000 incidents per year in USA**
- 50% of severe chemical burns are due to HF
- A body area of 2% can be fatal with concentrated HF
- Average affected area is 0.5 < 1% < 10</p>
- **In 64% of the cases, hands are affected and in 10% of the cases, the forearms**

Segal EB Chemical Health and Safety, 2000, 18-23
 Wedler V et al. J Trauma 2005, 58, 852-857
 Hatzifotis M et al. Burns 2004, 30, 156-159

Hydrofluoric acid (HF) A small and weak acid but a devil chemical

- a corrosive attack
 - due to H^+ ion
- penetration of F⁻ ion:
 - systemic toxic action
 - chelation of Ca²⁺
 - chelation of Mg²⁺
 - Cellular poisoning
 - $F^- + Na^+ \rightarrow Na F$
 - $F^- + K^+ \rightarrow KF$

HF will penetrate and then dissociate in H⁺ and F⁻ in the tissue creating necrosis and an evolutive burn similar to bases

Factors of development of HF burn?

The evolution of the burn depends on

- its concentration
- the time of contact
- the surface of the affected area
- if it is used at high temperature

First time HF properties were discovered

Thenard and Gay-Lussac. Annals of Chemistry, 1809, 69, 204

- Thénard and Gay-Lussac were the first researchers to prepare a concentrated hydrofluoric acid, demonstrating its existence (also found boron, cyanide)
- Their product fumed strongly in air, rapidly dissolved glass, and **caused extraordinary burns** on contact with the skin
- They described how a diluted solution of potassium hydroxide stopped the pain, so they introduced 200 years before the idea of neutralising the acid burning.

Effects due to HF burns

Segal EB Chemical Health and Safety, 2000, 18-23

- Concentration > 50% : Immediate pain and rapid necrosis
- Concentration 20%-50% :Delayed burn from 1 to 8 hours
- Concentration < 20% :
 Delayed pain and necrosis until 24 hours

HF burns with a lethal risk

Penetration	% affected surface	HF Concentration
Burn due to contact	1	anhvdrous
Burn due to contact	5	> 70%
Burn due to contact	7	50-70%
Burn due to contact	10	20-50%
Burn due to contact	20	< 20%
Prolonged exposure or	Minor burns	
long delay before treatme	nt	
HF Ingestion		>5%
HF Inhalation		>5%

Dunser MW, Burns, 2004, 391-398

Examples of HF cutaneous burns

