Amphoteric Compound
Chemical Eye/Skin Splash
Decontamination: Clinical Experience

Hall AH1, Mathieu L2, Burgher F2, Fosse C2, Blomet J2

1Toxicology Consulting and Medical Translating Services, Inc., Laramie, Wyoming, USA and Colorado School of Public Health, Denver, Colorado, USA
2Laboratoire Prevor, Valmondois, France
Objective and method

- To evaluate clinical experience with using an amphoteric compound in a hypertonic solution as a decontamination solution for eye/skin chemical splashes, extending previously published data.(1-4)

- A review of cases of clinical use of an amphoteric solution for eye/skin chemical splash decontamination voluntarily reported to the manufacturer as part of a post-marketing surveillance program was done.

Mechanism of the chemical injury

- result of a contact of the skin/the eye with an irritant or a corrosive

- The severity of the burn depends mainly on:
 - nature and concentration of the chemical involved,
 - energy level involved,
 - time of contact.
 - And also:
 - physical factors like the pressure or the temperature
 - the Total Body Surface Area (TBSA)
 - and whether the skin/eye is healthy or not.

- Chemicals can also be toxic! (Ex: hydrofluoric acid, HF)
What is Diphoterine®?

- An active washing solution for ocular and cutaneous chemical splashes
- An aqueous solution containing the fundamental properties of water:
 - mechanical effect of pulling the chemical agent away from the surface of the body tissue.
- An amphoteric solution
 - Acts in the same way on the acids and the bases, with a rapid return towards a zone of physiological pH. Also amphoteric for oxidisers/reducing agent and solvents.
- A hypertonic solution
 - Stops the penetration of corrosive chemicals into the tissues creating a flux from the inside to the outside of the body.

A medical device EC 0459, IIa class

14th European Burns Association Congress, The Hague, The Netherlands
Collected results

- From 1987 to 2010
- 58 reports from 52 different industrial facilities/organizations
- 44 total cases reported
- Some cases exposed several people on several body areas
Chemicals involved

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Range of conc.</th>
<th>N</th>
<th>Conc. not specified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium hydroxide (NaOH)</td>
<td>flakes – 50% - 25%</td>
<td>14</td>
<td>4</td>
</tr>
<tr>
<td>sulfuric acid (H$_2$SO$_4$)</td>
<td>98% - 96% - 87%</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>Caustic solution or basic substance</td>
<td>pH>8.2</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Phenol & derivates</td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Nitric acid (HNO$_3$)</td>
<td>100% - 70%</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Lubricants</td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Trichloroethane</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Acrylic acid</td>
<td>100%</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Acrylamide</td>
<td>50%</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Acrylic varnish</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>DMEA</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Others</td>
<td></td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>44</td>
<td></td>
<td>22</td>
</tr>
</tbody>
</table>
Body surfaces splashed

- Eyes and face were the most involved body areas
- Skin splashes (5):
 Mean of TBSA: 9.1%

FIRST AID MANAGEMENT

- 40 cases washed with Diphotherine® first
- 3 cases washed with tap water first
- 1 phenol splash washed with tap water + PEG + Diphotherine®

PEG: Polyethylene Glycol

5 Management of the major burn, Ames WA, practical procedures, Issue 10(1999) art. 10

14th European Burns Association Congress, The Hague, The Netherlands
First aid management

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
<th>Not mentioned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secondary treatment</td>
<td>4</td>
<td>9</td>
<td>31</td>
</tr>
<tr>
<td>Lost work time</td>
<td>1</td>
<td>26</td>
<td>17</td>
</tr>
<tr>
<td>Sequelae</td>
<td>9</td>
<td>19</td>
<td>16</td>
</tr>
</tbody>
</table>

- In 2 cases, Diphoterine® was only used on *some but not all* exposed body parts. Outcome was worse in those parts not washed with Diphoterine®.
- In one case, Diphoterine® was used rapidly on some body parts and only erythema developed. However, sodium hydroxide soaked through a shoe and Diphoterine® washing was delayed by 15 minutes, resulting in a second degree skin injury (see picture).
- In the 3 cases with water washing first, the outcome in 2 of 3 cases was generally less good than in the cases where Diphoterine® was used first.

14th European Burns Association Congress, The Hague, The Netherlands
Other data(4)

- Clinical case series of 180 alkali splashes on skin from Oct. 2006 to March 2008
- Dr M. Donoghue, Chief Medical Officer, Alcoa Australia

<table>
<thead>
<tr>
<th></th>
<th>Diphoterine® first</th>
<th>Water first</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>138</td>
<td>42</td>
</tr>
<tr>
<td>Time elapsed</td>
<td>1 min.</td>
<td>5 min.</td>
</tr>
<tr>
<td>No chemical burn</td>
<td>52.9%</td>
<td>21.4%</td>
</tr>
<tr>
<td>Blisters or more severe signs</td>
<td>7.9%</td>
<td>23.8%</td>
</tr>
</tbody>
</table>

14th European Burns Association Congress, The Hague, The Netherlands
Conclusion

- Diphotherine® is currently used in industry, as a first aid solution.
- Used as primary action, it limits chemical burn development.
- In this non-random retrospective series, Diphotherine® was associated with good clinical outcomes.
Thank you